Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















STELLAR CHEMISTRY
Planetary nebulae map of the Milkyway gets distancing tweak
by Staff Writers
London, UK (SPX) Nov 25, 2015


A collage showing 22 individual planetary nebulae artistically arranged in approximate order of physical size. The scale bar represents 4 light years. Each nebula's size is calculated from the authors' new distance scale, which is applicable to all nebulae across all shapes, sizes and brightnesses. The very largest planetary nebula currently known is nearly 20 light years in diameter, and would cover the entire image at this scale. Image courtesy ESA/Hubble and NASA, ESO, Ivan Bojicic, David Frew, Quentin Parker. For a larger version of this image please go here.

A way of estimating more accurate distances to the thousands of so-called planetary nebulae dispersed across our Galaxy has been announced by a team of three astronomers based at the University of Hong Kong: Dr David Frew, Prof Quentin Parker and Dr Ivan Bojicic. The scientists publish their results in Monthly Notices of the Royal Astronomical Society.

Despite their name, planetary nebulae have nothing to do with planets. They were described as such by early astronomers whose telescopes showed them as glowing disc-like objects.

We now know that planetary nebulae are actually the final stage of activity of stars like our Sun. When they reach the end of their lives, these stars eject most of their atmosphere into space, leaving behind a hot dense core. Light from this core causes the expanding cloud of gas to glow in different colours as it slowly grows, fading away over tens of thousands of years.

There are thousands of planetary nebulae in our Galaxy alone, and they provide targets for professional and amateur astronomers alike, with the latter often taking spectacular images of these beautiful objects. But despite intense study, scientists have struggled to measure one of their key properties - their distance.

Dr Frew, lead author on the paper, said: "For many decades, measuring distances to Galactic planetary nebulae has been a serious, almost intractable problem because of the extremely diverse nature of the nebulae themselves and their central stars. But finding those distances is crucial if we want to understand their true nature and physical properties."

The solution presented by the astronomers is both simple and elegant. Their method requires only an estimate of the dimming toward the object (caused by intervening interstellar gas and dust), the projected size of the object on the sky (taken from the latest high resolution surveys) and a measurement of how bright the object is (as obtained from the best modern imaging).

The resulting so-called 'surface-brightness relation' has been robustly calibrated using more than 300 planetary nebulae whose accurate distances have been determined via independent and reliable means.

Prof Parker explained that, "the basic technique is not new but what marks out this work from what has gone before is the use of the most up-to-date and reliable measurements of all three of those crucial properties".

This is combined with the use of the authors' own robust techniques to effectively remove "doppelgangers" and mimics that have seriously contaminated previous planetary nebulae catalogues and added considerable errors to other distance measurements.

The new approach works over a factor of several hundred thousand in surface brightness, and allows astronomers to measure the distances to planetary nebulae up to 5 times more accurately than previous methods. "Our new scale is the first to accurately determine distances for the very faintest planetaries" said Dr Frew.

"Since the largest nebulae are the most common, getting their distances right is a crucial step".

Planetary nebulae are a fascinating if brief stage in the life of a low- to middle-weight star. Being able to better measure distances and hence the sizes of these objects will give scientists a far better insight into how these objects form and develop, and how stars as a whole evolve and die.

The new work appears in "The Ha surface brightness - radius relation: a robust statistical distance indicator for planetary nebulae", David J. Frew, Quentin A. Parker and Ivan S. Bojicic, Monthly Notices of the Royal Astronomical Society, Oxford University Press.

.


Related Links
Monthly Notices of the Royal Astronomical Society
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Gaia consortium meets ahead of first data catalogue release next year
Paris (ESA) Nov 18, 2015
From 16 to 20 November 2015, about two hundred members of the Gaia Data Processing and Analysis Consortium (DPAC) are meeting in Leiden, The Netherlands, to review the current status of preparations for future catalogue releases from ESA's billion star surveyor mission. Launched in December 2013, ESA's Gaia satellite started routine scientific operations on 25 July 2014. As it scans the sk ... read more


STELLAR CHEMISTRY
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

STELLAR CHEMISTRY
ExoMars prepares to leave Europe for launch site

ExoMars has historical, practical significance for Russia, Europe

Tracking down the 'missing' carbon from the Martian atmosphere

Mars to lose its largest moon, Phobos, but gain a ring

STELLAR CHEMISTRY
Aerojet Rocketdyne tapped for spacecraft's crew module propulsion

Brits Aim for the Stars with Big Bucks on Offer to Conquer Final Frontier

XCOR develops Lynx Simulator

Orion ingenuity improves manufacturing while reducing mass

STELLAR CHEMISTRY
China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

STELLAR CHEMISTRY
Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

Partners in Science: Private Companies Conduct Valuable Research on the Space Station

SAGE III Leaves Langley for Journey to ISS

STELLAR CHEMISTRY
Vega receives the LISA Pathfinder payload for its December 2 flight

Rocket launch demonstrates new capability for testing technologies

Rocket launch demonstrates new capability for testing technologies

NASA calls on SpaceX to send astronauts to ISS

STELLAR CHEMISTRY
Retro Exo and Its Originators

How DSCOVR Could Help in Exoplanet Hunting

Neptune-size exoplanet around a red dwarf star

Forming planet observed for first time

STELLAR CHEMISTRY
SSL selected to provide new high throughput satellite to Telesat

Hardened steels for more efficient engines

Virtual reality app brings crisis zones closer to home

'Shrinking bull's-eye' data algorithm crunches days into hours




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.