. 24/7 Space News .
TIME AND SPACE
Physicists measure van der Waals forces of individual atoms for the first time
by Staff Writers
Basel, Switzerland (SPX) May 17, 2016


Rare gas atoms deposited on molecular network are investigated with a probing tip, which is decorated with a xenon atom. The measurements give information about the weak van der Waals forces between these individual atoms. Image courtesy University of Basel, Department of Physics. For a larger version of this image please go here.

Physicists at the Swiss Nanoscience Institute and the University of Basel have succeeded in measuring the very weak van der Waals forces between individual atoms for the first time. To do this, they fixed individual noble gas atoms within a molecular network and determined the interactions with a single xenon atom that they had positioned at the tip of an atomic force microscope.

As expected, the forces varied according to the distance between the two atoms; but, in some cases, the forces were several times larger than theoretically calculated. These findings are reported by the international team of researchers in Nature Communications.

Van der Waals forces act between non-polar atoms and molecules. Although they are very weak in comparison to chemical bonds, they are hugely significant in nature. They play an important role in all processes relating to cohesion, adhesion, friction or condensation and are, for example, essential for a gecko's climbing skills.

Van der Waals interactions arise due to a temporary redistribution of electrons in the atoms and molecules. This results in the occasional formation of dipoles, which in turn induce a redistribution of electrons in closely neighboring molecules. Due to the formation of dipoles, the two molecules experience a mutual attraction, which is referred to as a van der Waals interaction.

This only exists temporarily but is repeatedly re-formed. The individual forces are the weakest binding forces that exist in nature, but they add up to reach magnitudes that we can perceive very clearly on the macroscopic scale - as in the example of the gecko.

Fixed within the nano-beaker
To measure the van der Waals forces, scientists in Basel used a low-temperature atomic force microscope with a single xenon atom on the tip. They then fixed the individual argon, krypton and xenon atoms in a molecular network.

This network, which is self-organizing under certain experimental conditions, contains so-called nano-beakers of copper atoms in which the noble gas atoms are held in place like a bird egg. Only with this experimental set-up is it possible to measure the tiny forces between microscope tip and noble gas atom, as a pure metal surface would allow the noble gas atoms to slide around.

Compared with theory
The researchers compared the measured forces with calculated values and displayed them graphically. As expected from the theoretical calculations, the measured forces fell dramatically as the distance between the atoms increased.

While there was good agreement between measured and calculated curve shapes for all of the noble gases analyzed, the absolute measured forces were larger than had been expected from calculations according to the standard model. Above all for xenon, the measured forces were larger than the calculated values by a factor of up to two.

The scientists are working on the assumption that, even in the noble gases, charge transfer occurs and therefore weak covalent bonds are occasionally formed, which would explain the higher values.

The international team of scientists from Switzerland, Japan, Finland, Sweden and Germany used the experimental set-up above to measure the smallest forces ever detected between individual atoms. In doing so, the researchers have demonstrated that they can still push ahead into new fields using atomic force microscopy, which was developed exactly 30 years ago.

Research paper: Van der Waals interactions and the limits of isolated atom models at interfaces


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Basel
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
A quasiparticle collider
Santa Barbara CA (SPX) May 16, 2016
In the early 1900s, Ernest Rutherford shot alpha particles onto gold foils and concluded from their scattering properties that atoms contain their mass in a very small nucleus. A hundred years later, modern scientists took that concept to a new level, building the Large Hadron Collider in Switzerland to smash protons into each other, which led to the discovery of the Higgs boson. However, ... read more


TIME AND SPACE
NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

TIME AND SPACE
Flying observatory detects atomic oxygen in Martian atmosphere

Beyond Ikea: Swedish Gadget to Harvest Water on Martian Surface

Clues about Volcanoes Under Ice on Ancient Mars

Second ExoMars mission moves to next launch opportunity in 2020

TIME AND SPACE
No more space race for US, rivalry gives way to collaboration

Thornton leads upgrade of ground special power for Orion

How will people interact with technology in the future

NASA Awards Contract for Aeronautics, Exploration Modeling, Simulation

TIME AND SPACE
Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

China launches Kunpeng-1B sounding rocket

TIME AND SPACE
NASA, Space Station partners announce future mission crew members

New landing date for ESA astronaut Tim Peake

Tim Peake goes roving

Russia delays space crew's return to Earth

TIME AND SPACE
First work platforms powered tested in VAB for Space Launch System

SpaceX successfully lands rockets first stage after space launch

SpaceX lands rocket's first stage after space launch

Agreement Signed for Airbus Safran Launchers

TIME AND SPACE
Kepler space telescope finds another 1284 exo planets

Scientists discover potentially habitable planets

MIT compiles list of potential gases to guide search for life on exoplanets

Three potentially habitable worlds found around nearby ultracool dwarf star

TIME AND SPACE
Exploring the mathematical universe

Design tool enables novices to create bendable input devices for computers

Silver could be the key to gold-standard flexible gadgets

Distance wireless charging enhanced by magnetic metamaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.