Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















ENERGY TECH
Phosphine as a superconductor? Sure, but the story may be complicated
by Staff Writers
Buffalo NY (SPX) Feb 09, 2016


These are illustrations of two compounds made from phosphorus atoms (orange) and hydrogen atoms (white). Such compounds are potential superconductors, and may form when phosphine is squeezed under extremely high pressures, according to University at Buffalo chemists who predicted the compounds' structures using XtalOpt, an open-source computer program created at UB. Image courtesy Tyson Terpstra. For a larger version of this image please go here.

Phosphine is one of the newest materials to be named a superconductor, a material through which electricity can flow with zero resistance. In 2015, scientists reported that they had liquefied the chemical and squeezed it under high pressure in a diamond vice to achieve superconductivity. Now, a different group of researchers is providing insight into what may have happened to the phosphine as it underwent this intense compression.

University at Buffalo chemists say that according to their calculations, phosphine's superconductivity under pressure likely arose due to the compound decomposing into other chemical products that contain phosphorus and hydrogen.

"So it's probably a mix of these decomposition products - and not phosphine itself - that results in the superconductivity observed in experiments," says Eva Zurek, PhD, an associate professor of chemistry in the UB College of Arts and Sciences.

The findings could assist scientists in their quest to find or create new commercially feasible superconductors, which are sought after because the materials transmit energy with ultra-high efficiency, losing no energy and giving off no heat, she says.

"In experiments where high pressures are involved, it's difficult for scientists to characterize what materials they've created," Zurek says. "But understanding what's actually there is important because it gives us an idea of how we might go about making new superconducting compounds."

The new study was published on Jan. 16 in the Journal of the American Chemical Society as a Just Accepted Manuscript and will appear in a future print edition of the journal.

Breaking things down (literally)
At room temperature, phosphine is composed of one atom of phosphorus (P) and three of hydrogen (H).

But the UB researchers calculated that under pressure, PH3 becomes unstable and likely breaks down into structures that include PH2, PH and PH5, which are more stable.

Zurek's team used XtalOpt, an open-source computer program that one of her former students created, to understand which combinations of phosphorus and hydrogen were stable at pressures of up to 200 gigapascals - nearly 2 million times the pressure of our atmosphere here on Earth, and similar to the pressure at which phosphine was squeezed in the diamond vice in the superconductor experiment.

The search for superconductors
One reason researchers are so keen on finding new superconductors is that the only known superconductors are superconducting only at extremely low temperatures (well below freezing), which complicates practical applications and makes their maintenance extremely difficult.

Interest in the field has intensified over the past year, since a team led by scientist Mikhail Eremets smashed previous temperature records by finding that a hydrogen and sulfur compound squeezed under 150 gigapascals of pressure was a superconductor at 203 degrees Kelvin, about -94 degrees Fahrenheit. That may seem cold, but it's a lot warmer than past thresholds.

Eremets and his colleagues were also the group that conducted the experiment on phosphine, with superconductivity observed at temperatures higher than 100 Kelvin (roughly -280 degrees Fahrenheit).

"Finding materials that are superconducting at high temperatures would revolutionize our electric power infrastructure, because virtually no energy would be wasted during transmission and distribution through superconducting wires," Zurek said. "In addition, superconducting magnets could be employed for high-speed levitating trains (maglev) that move more smoothly and efficiently than wheeled trains. These technologies exist nowadays, but the superconductors must be cooled to very low temperatures for them to work."

The new study by Zurek's team was funded by the National Science Foundation and the Department of Energy (DOE) National Nuclear Security Administration via the Carnegie/DOE Alliance Center. The research was supported by UB's Center for Computational Research, an academic supercomputing facility.

.


Related Links
University at Buffalo
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Helping turn waste heat into electricity
Washington DC (SPX) Feb 04, 2016
At the atomic level, bismuth displays a number of quirky physical phenomena. A new study reveals a novel mechanism for controlling the energy transfer between electrons and the bismuth crystal lattice. Mastering this effect could, ultimately, help convert waste heat back into electricity, for example to improve the overall efficiency of solar cells. These findings have now been published i ... read more


ENERGY TECH
Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

ENERGY TECH
Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Sandy Selfie Sent from NASA Mars Rover

ENERGY TECH
NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Mars or the Moon

The Orion Crew Module Pressure Vessel Ready For Testing

Astronaut rescue exercise proves Det. 3 command, control ready to support DoD, NASA

ENERGY TECH
China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

ENERGY TECH
Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russians spacewalk to retrieve biological samples

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

ENERGY TECH
SpaceX Conducts Hover Tests

SES-9 Launch Targeting Late February

Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

ENERGY TECH
Earth-like planets have Earth-like interiors

The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

ENERGY TECH
Russia to Debut 3D Printed Armata Tank

Metal oxide sandwiches: New option to manipulate properties of interfaces

A fast solidification process makes material crackle

Researchers discover new phase of boron nitride and a new way to create pure c-BN




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.