Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Penn researchers help show new way to study and improve catalytic reactions
by Staff Writers
Philadelphia PA (SPX) Jul 19, 2013


By precisely designing a series of nanocrystals with different sizes, shapes and compositions, researchers showed that the efficiency of certain catalysts depends on the length of the interface between their two component materials. Credit: Matteo Cargnello.

Catalysts are everywhere. They make chemical reactions that normally occur at extremely high temperatures and pressures possible within factories, cars and the comparatively balmy conditions within the human body. Developing better catalysts, however, is mainly a hit-or-miss process.

Now, a study by researchers at the University of Pennsylvania, the University of Trieste and Brookhaven National Laboratory has shown a way to precisely design the active elements of a certain class of catalysts, showing which parameters are most critical for improving performance.

This highly controlled process could be a new paradigm for fine-tuning catalysts used in everything from making new materials to environmental remediation.

Murray's team set out to improve the process for designing a class of reaction-promoting materials known as supported catalysts. These catalysts are made of two different solid substances - one supporting the other - but existing techniques for fabricating them don't provide much in the way of precisely controlling their parameters. Because of the lack of uniformity in conventional catalysts, it can be difficult to tell which aspects of their combination lead to better systems.

"In putting together materials design, functional testing and state-of-the art-characterization tools, we're looking to develop a feedback loop," Murray said. "Improving our understanding about the active components of these catalysts can tell us what to emphasize in future systems."

Capitalizing on the Murray lab's expertise in creating nanocrystals with precisely defined sizes, shapes and compositions, the researchers created a series of supported catalysts and tested them against one another on a model catalytic reaction: the oxidation of carbon monoxide.

This basic example of catalysis is also common in real-world applications, as it turns carbon monoxide, which is toxic, into carbon dioxide. Carbon monoxide is a common byproduct of the incomplete combustion of organic compounds, so it is produced in car engines and many industrial processes. Catalytic filters and converters are often required by law to cut down carbon monoxide pollution.

Catalysts are often used for this reaction as simply adding carbon monoxide and oxygen in an enclosed chamber is not sufficient to cause them to combine. Without additional pressure or heat - up to several hundreds of degrees Celsius - the gas molecules do not collide frequently or energetically enough to produce carbon dioxide.

Adding a catalyst is a more efficient alternative to adding heat or pressure. The catalyst materials are not consumed during the reaction but provide a template of sorts that helps the reactants find one another and bond.

This active material is typically a metal, as metallic elements are able to form many kinds of bonds. Increasing the surface area of this material increases the reaction rate, as it provides more places for the reacting molecules to bond, so the metal is often broken down to as small particles as possible.

These small metal particles are often deposited on the second material - a support - which is typically made of a metal oxide. Supports are generally inert, simply providing a thermally stable platform for the metal particles, but some are "active" in that they are also involved in the bonds that speed along the catalytic reaction. For carbon monoxide oxidation using active supports, it is theorized that the metal particles hold carbon monoxide molecules while the support donates oxygen molecules, bringing the two gases together in a more consistent and faster way than if both had to bond to the metal alone.

This theory would suggest that increasing the percentage of atoms at the interface between the metal particles and the support is more important than increasing the surface area of the metal.

"For this family of supported catalysts, however, we had only fragmentary knowledge about what regions of the whole catalytic system are critically active," Murray said. "Now, with better tools and the ability to make better samples, we can go in and pull out the things that really matter."

To test the theory, the researchers made nanocrystals of three sizes with three metals: nickel, palladium and platinum. They then deposited these nanocrystals on both an inert support, aluminum oxide, and an active support, cerium oxide. Transmission electron microscopy, performed at Brookhaven, was critical in enabling the researchers to confirm each of the 18 combinations came together correctly prior to comparing their performances in the carbon monoxide oxidation reaction.

The results began to confirm their hypothesis.

"For the aluminum oxide support," Cargnello said, "there was basically no difference in the catalytic activity between the different sizes of particles when normalized per number of metal atoms, which is what the literature has suggested for the past few decades. The surprise came when, in Trieste, we tested the cerium oxide supported samples, where we found that the smaller particles were more active than the larger ones, on the same basis. That means that structural differences in the particles were related to the different active sites for the reaction."

Returning the 18 combinations to Brookhaven, the researchers used the transmission electron microscope to create a computer model of the interfaces between the nanocrystals and supports. Able to count the individual atoms in this model, they saw that, the greater the proportion of a nanocrystal's atoms were at the interface with the support, the better it performed.

"We saw this proportion made a much bigger difference in the catalyst performance than the material the nanocrystals were made of," Cargnello said. "This is important in that nickel is much less expensive than platinum and palladium, so, if we can figure out how to fine-tune nickel nanocrystals, we may be able to make much cheaper catalysts that work just as well."

More than showing a path to improving this particular reaction, the study represents a new way of studying catalytic reactions in general, as well as a more straight-forward way of designing the materials at their core.

"We're flipping the vision of catalysis," Cargnello said." Usually, people see that a material performs well, then study its structure to determine why it behaves the way it does. Here, we're preparing the structure based on how we think the material is going to be behave, then see how it performs."

The research is the result of a highly collaborative effort between the three institutions. It was led by Christopher Murray, a Penn Integrates Knowledge Professor with appointments in the Department of Chemistry in the School of Arts and Sciences and the Department of Materials Science and Engineering in the School of Engineering and Applied Science, and Matteo Cargnello, a postdoctoral fellow in Murray's group. Cargnello was a graduate student in Paolo Fornasiero's group at the University of Trieste when the research began and also worked with Raymond Gorte, professor in the Department of Chemical and Biomolecular Engineering, after coming to Penn. Penn graduate students Vicky Doan-Nguyen and Thomas R. Gordon, as well as Brookhaven's Rosa Diaz and Eric Stach, also contributed to the study. It was published in the journal Science.

.


Related Links
University of Pennsylvania
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Stanford scientists break record for thinnest light-absorber
Stanford CA (SPX) Jul 19, 2013
Stanford University scientists have created the thinnest, most efficient absorber of visible light on record. The nanosize structure, thousands of times thinner than an ordinary sheet of paper, could lower the cost and improve the efficiency of solar cells, according to the scientists. Their results are published in the current online edition of the journal Nano Letters. "Achieving complet ... read more


TECH SPACE
Engine recovered from Atlantic confirmed as Apollo 11 unit

Soviet Moon rover moved farther than thought

Scientist says Earth may once have been orbited by two moons

Dust hazard for Moon missions: scientists

TECH SPACE
Reports Detail Mars Rover Clues to Atmosphere's Past

MAVEN Spectrometer Opens Window to Red Planet's Past

Curiosity Mars Rover Passes Kilometer of Driving

How Mars' atmosphere got so thin: New insights from Curiosity

TECH SPACE
The Zero Gravity Coffee Cup

Outside View: Future science fiction

New Flight Projects Building Boasts First NASA Goddard 'Green' Roof

Technology Could Curtail Astronaut Conflict

TECH SPACE
Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

China's space tracking ship Yuanwang-5 berths at Jakarta for replenishment

TECH SPACE
Space Station ARISS Software Upgraded by Student For Students

Astronaut's helmet leak forces abrupt end to spacewalk

NASA puzzled as astronaut's helmet leak halts spacewalk

Luca, the orbital repair man

TECH SPACE
Alphasat stacks up

ESA Signs Off On Baseline Configuration Of Ariane 6

Alphasat and INSAT 3D fueled for Ariane 5 heavy lift dual launch

Special group to be set up for inspecting production of Proton-M carrier rockets

TECH SPACE
A snow line in an infant solar system: Astronomers take first images

In the Zone: The Search For Habitable Planets

Snow in an Infant Planetary System

UM Researchers Land NASA Grant to Search Space for Exoplanets

TECH SPACE
Unusual material expands dramatically under pressure

Milikelvins drive droplet evaporation

Stanford scientists break record for thinnest light-absorber

Penn researchers help show new way to study and improve catalytic reactions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement