Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Penn researchers develop a new type of gecko-like gripper
by Staff Writers
Philadelphia, PA (SPX) Jun 18, 2015


Researchers at the University of Pennsylvania are developing a new kind of gripper, motivated by the ability of animals like the gecko to grip and release surfaces, that is perfectly suited for the delicate work involved in semiconductor manufacturing. Like the gecko, the gripper has tunable adhesion, meaning that, despite having no moving parts, its effective stickiness can be tuned from strong to weak. Unlike the gecko and other artificial imitators that rely on structures with complex shapes, the Penn team's gripper uses a simpler, two-material structure that is easier to mass produce. At their current millimeter-scale size, the grippers can be used for moving smooth, fragile components, like silicon wafers or glass sheets. Scaled down, they could be used in arrays to grip to a range of rough and smooth surfaces, making them useful for climbing robots and other larger-scale applications. Image courtesy University of Pennsylvania. For a larger version of this image please go here.

Picking things up and putting them down is a mainstay of any kind of manufacturing, but fingers, human or robotic, are not always best for the task at hand.

Researchers at the University of Pennsylvania are developing a new kind of gripper, motivated by the ability of animals like the gecko to grip and release surfaces, that is perfectly suited for the delicate work involved in semiconductor manufacturing.

Like the gecko, the gripper has "tunable adhesion," meaning that, despite having no moving parts, its effective stickiness can be tuned from strong to weak. Unlike the gecko and other artificial imitators that rely on structures with complex shapes, the Penn team's gripper uses a simpler, two-material structure that is easier to mass-produce.

At their current millimeter-scale size, the grippers can be used for moving smooth, fragile components, like silicon wafers or glass sheets. Scaled down, they could be used in arrays to grip to a range of rough and smooth surfaces, making them useful for climbing robots and other larger-scale applications.

The research was conducted by Kevin Turner, the Gabel Family Term Associate Professor in the School of Engineering and Applied Science's Department of Mechanical Engineering and Applied Mechanics, and Helen Minsky, a graduate student in his lab.

"When it comes to tunable adhesion," Turner said, "everyone is familiar with the gecko, and everyone tries to copy it. The problem is that it's really hard to manufacture complex structures as well as nature. We've come up with a strategy that can achieve similar adhesion behavior but is much easier to make."

Geckos can stick to sheer surfaces due to complex structures on the pads of their feet. There, what look like ridges to the naked eye are actually a dense array of tiny fibers with flared tips, looking like a collection of long, thin mushrooms jutting out from their footpads at an angle.

These structures are sticky because of a phenomenon known as van der Waals adhesion, which is present any time two surfaces are in close contact; the closer the contact, the stronger is the attraction. Van der Waals forces generally aren't noticeable in everyday life, as even two seemingly smooth, flat surfaces are rough enough at the microscopic scale to make them ineffective.

But with many angled, flared-tip fibers lying flush with this rough terrain, van der Waals forces are strong enough for the gecko to stick to a wall. Changing the angle of their feet is what makes the gecko's adhesion "tunable" and what allows them to detach from the wall to take each step.

"Other researchers have mimicked these structures to achieve tunable adhesion, but they are tough to make," Minsky said. "You can make a few of these structures, but, if you want to make larger arrays of them, it becomes much tougher. The angles and the flared tip means you can't just slip them out of a mold."

The Penn's team approach to realizing tunability and to address this manufacturing problem relies on a gripper with a fundamentally different structure. Rather than being angled or flared, they are simple cylindrical posts. The secret is in their composite construction: a hard plastic core surrounded by a softer silicone rubber shell.

"Anytime you have a corner, you have a place that has higher stress," Minsky said. "The reason the gecko's fibers stick so well is because the mushroom-shaped tip forces the high stressed region from edge to the center, where it's hard to start a crack."

"The composite post geometry," Turner said, "achieves the same effect as the mushroom shape. The soft rubber conforms to the roughness of the surface, and, by putting a stiff core in the middle, you concentrate the stress in the center when you're pulling straight up."

To detach the posts, the researchers apply a lateral force, which shifts the stress back to the edge and allows the crack to easily start from there.

The researchers' prototype grippers are a few millimeters in diameter and designed to grip smooth surfaces, such as glass. Their experiments and simulations suggest that this structure will remain effective once scaled down to microscopic sizes.

"Our view is that this composite post structure presented in this work is a fundamental building block to realize larger adhesive surfaces with tunable properties," Turner said.

The study was published in Applied Physics Letters.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Pennsylvania
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
New honeycomb-inspired design delivers superior protection from impact
Austin TX (SPX) Jun 18, 2015
Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a groundbreaking new energy-absorbing structure to better withstand blunt and ballistic impact. The technology, called negative stiffness (NS) honeycombs, can be integrated into car bumpers, military and athletic helmets and other protective hardware. The technology could have major implic ... read more


TECH SPACE
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

TECH SPACE
NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

Red Planet Rising

TECH SPACE
Robotic Tunneler May Explore Icy Moons

How to sail through space on sunbeams - solar satellite leads the way

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

TECH SPACE
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

TECH SPACE
Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

ISS Adjusts Orbit to Evade Space Junk

Space station back on track after mystery Soyuz glitch

TECH SPACE
Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

NASA issues RFP for New Class of Launch Services

TECH SPACE
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

TECH SPACE
Penn research simplifies recycling of rare-earth magnets

Penn researchers develop a new type of gecko-like gripper

Squid inspires camouflaging smart materials

Video game titans get back in stride at E3




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.