Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Particle jets reveal the secrets of the most exotic state of matter
by Staff Writers
Cracow, Poland (SPX) Mar 12, 2015


Narrow particle streams (jets) recorded by the ATLAS Dectector in a single collision of lead nuclei. Jets, seen in indicated cones in the main figure (and as a narrow stream of particles on the bottom right of the figure), diverge in directions nearly perpendicular to the direction of the colliding beams of lead nuclei (which is perpendicular to the plane of the image). Image courtesy ATLAS Experiment 2014 CERN.

Shortly following the Big Bang, the Universe was filled with a chaotic primordial soup of quarks and gluons, particles which are now trapped inside of protons and neutrons. Study of this quark-gluon plasma requires the use of the most advanced theoretical and experimental tools.

Physicists from the ATLAS experiment at the Large Hadron Collider (LHC) has taken one crucial step towards a better understanding of the plasma and its properties, and recently published the results of their latest analysis.

When the LHC accelerator at the world's largest laboratory in CERN, Geneva, collided two lead ions travelling at nearly the speed of light, for a fraction of a second ordinary matter was transformed into the most exotic state of matter known to physics: quark-gluon plasma.

Analysis of the streams of particles penetrating the plasma has led to new findings about the properties of the plasma, and was recently published in the prestigious journal Physical Review Letters by the international team of physicists working at the ATLAS detector.

Immediately following the Big Bang and the formation of space-time, the Universe was filled with matter of extraordinary properties. Quarks and gluons, today only found bound within protons and neutrons, bounced about freely, comprising a homogenous 'soup'. This exceptional state of matter, appearing only at temperatures of billions of degrees, has been recreated by physicists at the LHC accelerator by colliding heavy lead ions.

Study of the quark-gluon plasma poses an enormous challenge. It appears only rarely during collisions, in extremely minute quantities, and then only for a fraction of a second.

It immediately begins to expand under its own pressure, rapidly cools and transforms itself into an avalanche of ordinary particles. Modern physics has no tools at its disposal to directly observe quarks and gluons. We cannot simply proceed with the usual methods of measurement, like inserting a thermometer into the plasma and waiting a few minutes for the results. Much more refined methods are needed.

"Fortunately detectors like the ATLAS detector have suceeded in recording the decay products of particles which have interacted in the quark-gluon plasma. By carefully analysing the properties of those particles, we can come to guarded conclusions about the features of the plasma," says Prof. Barbara Wosiek of the Institute of Nuclear Physics of the Polish Academy of Sciences in Krakow, Poland, who coordinated and approved the analysis of data gathered by the ATLAS detector in 2011. The analysis was performed by a team from Columbia University.

Most of the information we have on the quark-gluon soup is provided by particles that disperse sideways as the result of a collision. As they move in this specific direction, crosswise to the initial direction of flight of the lead nuclei, it makes it relatively easy to distinguish them from thousands of other particles and assures that they resulted from the early stage of the collision.

If so, immediately after the collision they had to traverse through the quark-gluon cloud, to then collapse into a concentrated narrow stream of particles, known as jets.

"These initially produced particles lose energy while going through the hot, dense plasma soup, which leads to extinguishing the high-energy jets. Through our analysis we go about reconstructing jets of an extremely high energy level, reaching 400 gigaelectronvolts", adds Prof. Wosiek.

After gathering the data on the reconstructed jets in the collision of lead nuclei, the team of physicists can correlate and compare the results with those obtained from proton-proton collisions. The idea behind such a comparison is quite simple. From a precise enough theoretical consideration it is expected that quark-gluon plasma will not arise in a proton-proton collision.

In turn, theoretical models of heavy ions in collision predict the formation of dense plasma in a head-on ion-ion collision of extremely high energy. Comparison of results from the data analysis of both types of collisions enables evaluation of how the jets are disturbed by the presence of plasma.

"In collisions of the lead nuclei we recorded up to half the number of jets as in the proton-proton collisions. This indicates that the particles ensuing from the intial collision lose energy as they interact with the plasma, and the high-energy jets are thus extinguished. It is an important result, because it allows us to discard some of the theoretical models of quark-gluon plasma which do not provide for such a high rate of suppression", explains Prof. Wosiek.

The ATLAS detector, built from the start with the help of Polish institutions, including the Institute of Nuclear Physics, is an extraordinarily sophisticated instrument the size of a multi-storey building. The data it collects on particle collisions flows through over one hundred million electronic channels and during a typical measurement 99% of them work properly.

Studies of lead ion collisions are only one element of the research undertaken by the international group of scientists experimenting at the LHC accelerator. The main research programme is carried out with proton-proton collisions to put the current theory of particle physics, the Standard Model, to the test, as well as to explore phenomena going beyond the Standard Model.

The most spectacular success of the physicists working on the ATLAS and CMS detectors at the LHC has been the discovery, after a half-century search, of the elusive and now famous Higgs boson.

"Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions..."; G. Aad et al. (ATLAS Collaboration); Physical Review Letters 114, 072302; DOI


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Electrons in slow motion
Rome, Italy (SPX) Mar 10, 2015
A process that is too fast to be measured and analysed. Yet a group of international scientists did not lose heart and conceived a sort of highly sophisticated moviola film-editing system, which allowed them to observe - for the first time in a direct manner - an effect underlying high-temperature conductivity. The results of their work have been published in Nature Physics on Monday 9 March 201 ... read more


TIME AND SPACE
Billionaire Teams Up with NASA to Mine the Moon

China Gets One Step Closer to Completing its Ambitious Lunar Mission

Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

TIME AND SPACE
Mystery Giant Mars Plumes Still Unexplained

NASA Challenge Invites Students to Help Design Journey to Mars Systems

Taking a Closer Look at Purple-Bluish Rock Formation

Have you ever used a camera on board an interplanetary spacecraft

TIME AND SPACE
Intergalactic GPS Will Guide You through the Stars

Space soprano plans first duet from ISS

Planetary Society Announces Test Flight for Privately Funded LightSail Spacecraft

Orion's Launch Abort System Motor Exceeds Expectations

TIME AND SPACE
China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

Tianzhou-1 cargo ship to dock with space lab in 2016

China's test spacecraft simulates orbital docking

TIME AND SPACE
Testing astronauts' lungs in Space Station airlock

Astronauts return to Earth on Russian Soyuz spaceship

International Space Station 'Lost' Without Russia Says NASA Chief

US astronauts speed through spacewalk at orbiting lab

TIME AND SPACE
THOR 7 being fueled for Arianespace's dual-payload April mission

Arianespace wins SES-15 launch contract

45th Space Wing unveils multi-vehicle launch support center

Soyuz Installed at Baikonur, Expected to Launch Wednesday

TIME AND SPACE
Scientists: Nearby Earth-like planet isn't just 'noise'

'Habitable' planet GJ 581d previously dismissed as noise probably does exist

Exorings on the Horizon

Planet 'Reared' by Four Parent Stars

TIME AND SPACE
NASA Goddard Provides Superfast Sensors for New MMS Mission

Spaceflight Industries Raises $20 Million to Accelerate Growth

Understanding The Electromagnetic Environmental Effects On Space Systems

German govt okays bill to boost electronic appliance recyling




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.