Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Oxygen-starved oceans held back life's recovery after the 'Great Dying'
by Staff Writers
Stanford CA (SPX) Feb 18, 2016

Karst topography in the Great Bank of Guizhou, south China. Image courtesy Kimberly Lau.

Stanford scientists have found that chronically low levels of oxygen throughout the oceans hampered the recovery of life after the Permian-Triassic extinction, the most catastrophic die-off in our planet's history. Also known as the "Great Dying," global ecosystems collapsed as some 90 percent of species perished in this extinction event 250 million years ago.

The new findings, published this week in the journal for the Proceedings of the National Academy of Sciences, for the first time convincingly show that ocean anoxia, or oxygen deficiency, was a global rather than an isolated phenomenon. The study paints a dire portrait of how anoxic conditions reduced seawater oxygen levels by 100-fold at the onset of the mass extinction. Oxygen levels then slowly rose, only returning to pre-extinction levels after 5 million years, corresponding to when the climate became more stable and life regained its former diversity.

"Explaining the 5 million year delay in the Earth system's recovery to pre-extinction conditions after the Permian extinction has been a challenge," said Kimberly Lau, a PhD candidate in Geological Sciences at Stanford's School of Earth, Energy and Environmental Sciences. "Our results suggest a unified explanation for biological and biogeochemical observations stemming from the most severe biotic crisis in Earth's history."

A devastating confluence of geological events is thought to have triggered the Great Dying a quarter billion years ago, including a massive eruption of climate-changing carbon dioxide from volcanoes associated with the Siberian Traps. Numerous studies have pointed to ocean anoxia playing a role both in the actual extinction event as well as its prolonged recovery phase. But until now these studies could not reliably testify beyond local conditions to the world's waters as a whole.

Key to the new study was identifying an anoxic signal that could be traced independently of regional circumstances. For that, Stanford researchers turned to a new technique using uranium, preserved in limestone, that had once been dissolved and mixed evenly throughout the oceans. "Because uranium is slowly cycled through the ocean, these records are thought to represent global changes in oxygenation," Lau said.

The dissolved uranium became trapped in seabed rocks when microbes chemically modified it into an insoluble form. Some microbes also utilize iron and sulfur to generate energy, creating minerals that further pull uranium out of the water. Uranium atoms naturally occur in two isotopes, or versions with differing numbers of neutrons, and these isotopes behave differently in chemical reactions. Conveniently for the sake of gauging anoxia, the rates of these various reactions involving uranium change are based on available oxygen.

"As you start to draw down the oxygen, you really start to change the chemistry of the water," said geochemist Kate Maher, study co-author and an associate professor in Stanford's School of Earth, Energy and Environmental Sciences. "I think it's amazing that we can use these very subtle chemical clues to tell us about conditions in the ocean 250 million years ago that dramatically affected life."

Different sites, same story
With this technique in hand, Lau and colleagues obtained rock samples from two widely separated sites, now located in modern-day China and Turkey. The samples of ancient marine sediments covered a wide time interval of the Permian-Triassic boundary, and given geographical separations of thousands of miles, attest to global, rather than local seawater characteristics.

"We have examined limestones that cover about 17 million years that really allow us to see patterns in oxygenation before the extinction, during the extinction, and throughout the recovery," Lau said.

With the observed pattern of ebbing anoxia dovetailing so well with evidence of life getting back on its feet over five million years post-Permian extinction, the Stanford researchers are eager to apply their methodology in better understanding the recoveries from Earth's other four major die-offs, with the most famous being the Cretaceous-Paleogene event 65 million years ago that killed the dinosaurs.

"The technique we used in this study is absolutely something we want to use for studying other mass extinction events, many of which have been linked to ocean anoxia," said study co-author Jonathan Payne, an associate professor and chair of geological sciences at Stanford's School of Earth, Energy and Environmental Sciences.

Many researchers are now taking a greater interest in the resurrection of flora and fauna worldwide following calamities, and not just how life was sent reeling in the first place.

"We tend to focus so much on the extinction event, not so much the recovery," Maher said, "but the recovery is also a really important piece that sets the stage for what happens in the next interval of life."

The new findings also have implications for our modern world, Payne said.

"These findings highlight the fact that ocean deoxygenation during the 21st century and beyond may lead not only to the loss of marine animal populations and species but also to unexpected feedbacks in the Earth system," he added. "The timescales of these feedbacks are long, meaning that the consequences of profound and extensive deoxygenation today could reverberate for many centuries, millennia, or longer."

Research Paper: "Marine anoxia and delayed Earth system recovery after the end-Permian extinction"

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Stanford's School of Earth, Energy and Environmental Sciences
Explore The Early Earth at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Study confirms giant flightless bird wandered the Arctic 50 million years ago
Boulder CO (SPX) Feb 16, 2016
It's official: There really was a giant, flightless bird with a head the size of a horse's wandering about in the winter twilight of the high Arctic some 53 million years ago. The confirmation comes from a new study by researchers from the Chinese Academy of Sciences in Beijing and the University of Colorado Boulder that describes the first and only fossil evidence from the Arctic of a mas ... read more

Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

Becoming a Martian

Site of Martian lakes linked to ancient habitable environment

Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

Are private launches changing the rocket equation?

NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Orion Crew Module processing begins for first mission

Mars or the Moon

China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Putting the Public in the Shoes of Space Station Science

Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russian spacewalk marks end of ESA's exposed space chemistry

ULA Launches NROL-45 Payload for the National Reconnaissance Office

SES-9 Launch Targeting Late February

Spaceflight Awarded First GSA Schedule Contract for Satellite Launch Services

SpaceX to carry military payloads as US phases out Russian rocket engines

Earth-like planets have Earth-like interiors

The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Body temperature triggers newly developed polymer to change shape

Light used to measure the 'big stretch' in spider silk proteins

Making sense of metallic glass

Not your grandfather's house, but maybe it should be

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement