. 24/7 Space News .
SPACE SCOPES
Out With the Old, In With the New: Telescope Mirrors Get New Shape
by Lori Keesey for GSFC News
Greenbelt MD (SPX) Nov 06, 2015


A rotationally symmetric optic is traditionally used in telescopes. The freeform optic on the right takes a different shape and is now being investigated for use in space-based instruments. Image courtesy NASA. For a larger version of this image please go here.

Telescope mirrors of old basically came in one shape: they were round and fit nicely inside a tube. No longer. An emerging optics technology now allows these light-gathering devices to take almost any shape, potentially providing improved image quality over a larger field of view - all in a smaller package.

Called freeform optics, this emerging mirror technology, brought about by advances in computer-controlled fabrication and testing, has triggered a sea change in optical engineering. Seeing the benefit of "potato chip-shape" or asymmetrical optics, NASA optical engineers at the Goddard Space Flight Center in Greenbelt, Maryland, have moved quickly to establish an expertise in this emerging technology.

"The use of freeform optics can significantly reduce the package size as well as improve the image quality," said Joseph Howard, who is working with Goddard engineer Garrett West to ultimately design, integrate, and test a two-mirror freeform optical telescope for imaging and spectroscopic applications.

According to both Howard and West, the technology holds great promise for scientists who want to develop compact telescopes for CubeSat and other small satellites - an increasingly popular and cost-effective alternative to more traditional missions that are more expensive to build and launch.

"If you want to put these telescopes into a smaller box, you need to let the mirrors bend like a potato chip," Howard explained.

With traditional two-mirror telescopes consisting of a primary light-gathering mirror and smaller, secondary mirrors, which relay the incoming light and direct it onto a detector, the rotationally symmetric - in other words, round - mirrors need to be aligned along the axis of the system to reduce optical aberrations that produce blurry images.

With freeform optics, however, the asymmetric mirrors can better correct for these aberrations to provide a larger usable field of view, as well as dramatically reduce the light path, or package size.

As part of their research effort, Howard and West recently evaluated the optical system of a coastal measurement instrument, originally equipped with nine symmetrical mirrors. By replacing the mirrors with freeform optics, they were able to reduce the size and number of mirrors to six, shrinking the telescope's overall packaging by more than tenfold.

They also have selected a candidate two-mirror freeform optical telescope design, and are now awaiting the delivery of the two freeform mirrors with which they plan to assemble a prototype instrument for testing. "Our design studies suggest that a factor of five or more reduction in the volume of optical instrumentation can be achieved by freeform surfaces," Howard said, adding that image quality also improves considerably.

Next year, the team plans to continue testing its two-mirror instrument, which includes a freeform mirror manufactured with 3-D printing, also called additive manufacturing. This extends the work of another R and D effort that developed the first imaging telescopes assembled almost exclusively with 3-D manufactured parts. With this technique, a computer-controlled laser melts material in precise locations as indicated by a 3-D CAD model. Because the mirror will be constructed layer by layer, it will be possible to construct a mirror with any shape.

The team believes the technology could prove to be game changing for a number of future missions, including instruments for imaging exoplanets. "NASA will benefit," Howard said. "Freeform optics will be critical. They will enable larger fields of view and fit in size-limited packages, such as those found in CubeSats and small satellites, or on larger missions where space allocations are tight," Howard said.

To hasten the learning curve, Howard and his colleague, engineer Garrett West, established a group called the Freeform Optics Research Group Endeavor (FORGE). The group oversees freeform-optics research carried out by private industry under NASA's Small Business Innovative Research program and Goddard scientists and engineers. The group already has implemented freeform-design practices in Goddard's Optical Design Laboratory, known as the ODL, which provides design and engineering for instrument proposal efforts.

Other non-NASA research groups also are studying freeform optics, including the Center for Freeform Optics (CeFO), a National Science Foundation-sponsored cooperative research center headquartered at the University of Rochester in New York and the University of North Carolina-Charlotte. Currently, FORGE and CeFO are discussing possible ways to collaborate on instrument concepts using freeform optics, Howard said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Technology at Goddard
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE SCOPES
Upgraded Hobby-Eberly Telescope Sees First Light
Fort Davis TX (SPX) Nov 03, 2015
After several years and a massive team effort, one of the world's largest telescopes has opened its giant eye again. The Hobby-Eberly Telescope (HET) at The University of Texas at Austin's McDonald Observatory has completed a $25 million upgrade and, now using more of its primary mirror, has achieved "first light" as the world's third-largest optical telescope. "This upgrade makes HET the ... read more


SPACE SCOPES
All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Study reveals origin of organic matter in Apollo lunar samples

Russia touts plan to land a man on the Moon by 2029

SPACE SCOPES
NASA mission reveals speed of solar wind stripping Martian atmosphere

Martian desiccation

Delving into the atmosphere of Mars

Shining a light on the aurora of Mars

SPACE SCOPES
Magic plant discovery could lead to growing food in space

NASA Armstrong Hosts Convergent Aeronautics Solutions Showcase

Got the right stuff? NASA is hiring astronauts

Studying Unidentified Aerial Phenomena Scientifically with UFODATA

SPACE SCOPES
China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

Declaration approved to promote Asia Pacific space cooperation

SPACE SCOPES
US astronauts dodge ammonia on risky spacewalk

UK astronaut dreams of heavenly Christmas pudding

NASA drops Boeing from race for $3.5 billion cargo contract

Space Station offers valuable lessons about life support systems

SPACE SCOPES
China launches new communication satellite

Russian Space Agency signs contracts for 31 commercial launches in 2015

Russia to refurbish satan missiles as cheaper launchers

Full-Scale Drills at Russia's Vostochny Cosmodrome to Start in Two Weeks

SPACE SCOPES
Distant world's weather is mixed bag of hot dust and molten rain

Disk gaps don't always signal planets

Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

SPACE SCOPES
The secret of resistance: Shattering into a thousand pieces

From good to bad with a copper switch

Diamonds may not be so rare as once thought

Researchers have the chemistry to make a star









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.