. 24/7 Space News .
IRON AND ICE
Organics on Ceres may be more abundant than originally thought
by Staff Writers
Providence RI (SPX) Jun 14, 2018

Last year, the Dawn spacecraft spied organic material on the dwarf planet Ceres, largest denizen of the asteroid belt. A new analysis suggests those organics could be more plentiful than originally thought. NASA / Rendering by Hannah Kaplan

Last year, scientists with NASA's Dawn mission announced the detection of organic material - carbon-based compounds that are necessary components for life - exposed in patches on the surface of the dwarf planet Ceres. Now, a new analysis of the Dawn data by Brown University researchers suggests those patches may contain a much higher abundance of organics than originally thought.

The findings, published recently in Geophysical Research Letters, raise intriguing questions about how those organics got to the surface of Ceres, and the methods used in the new study could also provide a template for interpreting data for future missions, the researchers say.

"What this paper shows is that you can get really different results depending upon the type of organic material you use to compare with and interpret the Ceres data," said Hannah Kaplan, a postdoctoral researcher at the Southwest Research Institute who led the research while completing her Ph.D. at Brown. "That's important not only for Ceres, but also for missions that will soon explore asteroids that may also contain organic material."

Organic molecules are the chemical building blocks for life. Their detection on Ceres doesn't mean life exists there or ever existed there; non-biological processes can give rise to organic molecules as well.

But because life as we know it can't exist without organic material, scientists are interested in how it's distributed through the solar system. The presence of organic material on Ceres raises intriguing possibilities, particularly because the dwarf planet is also rich in water ice, and water is another necessary component for life.

The original discovery of organics on Ceres was made using the Visible and Infrared (VIR) Spectrometer on the Dawn spacecraft, which went into orbit around the dwarf planet in 2015. By analyzing the patterns in which sunlight interacts with the surface - looking carefully at which wavelengths are reflected and which are absorbed - scientists can get an idea of what compounds are present on Ceres. The VIR instrument picked up a signal consistent with organic molecules in the region of Ernutet Crater on Ceres' northern hemisphere.

To get an initial idea of how abundant those compounds might be, the original research team compared the VIR data from Ceres with laboratory reflectance spectra of organic material formed on Earth. Based on that standard, the researchers concluded that between 6% and 10% of the spectral signature they detected on Ceres could be explained by organic matter.

But for this new research, Kaplan and her colleagues wanted to re-examine those data using a different standard. Instead of relying on Earth rocks to interpret the data, the team turned to an extraterrestrial source: meteorites.

Some meteorites - chunks of carbonaceous chondrite that have fallen to Earth after being ejected from primitive asteroids - have been shown to contain organic material that's slightly different from what's commonly found on our own planet. And Kaplan's work shows that the spectral reflectance of the extraterrestrial organics is distinct from that of terrestrial counterparts.

"What we find is that if we model the Ceres data using extraterrestrial organics, which may be a more appropriate analog than those found on Earth, then we need a lot more organic matter on Ceres to explain the strength of the spectral absorption that we see there," Kaplan said.

"We estimate that as much as 40% to 50% of the spectral signal we see on Ceres is explained by organics. That's a huge difference compared to the 6% to 10% previously reported based on terrestrial organic compounds."

If the concentration of organics on Ceres is indeed that high, it raises a host of new questions about the source of that material. There are two competing possibilities for where Ceres' organics may have come from. They could have been produced internally on Ceres and then exposed on the surface, or they could have been delivered to the surface by an impact from an organic-rich comet or asteroid.

This new study suggests that if the organics were delivered, then the potential high concentrations of the organics would be more consistent with impact by a comet rather than an asteroid. Comets are known to have significantly higher internal abundances of organics compared with primitive asteroids, potentially similar to the 40% to 50% figure this study suggests for these locations on Ceres.

However, the heat of an impact would likely destroy a substantial amount of a comet's organics, so whether or not such high abundances could even be explained by a cometary impact remains unclear, the researchers say.

The alternative explanation, that the organics formed directly on Ceres, raises questions too. The detection of organics has so far been limited to small patches on Ceres' northern hemisphere. Such high concentrations in such small areas require an explanation.

"If the organics are made on Ceres, then you likely still need a mechanism to concentrate it in these specific locations or at least to preserve it in these spots," said Ralph Milliken, an associate professor in Brown's Department of Earth, Environmental and Planetary Sciences and a study co-author. "It's not clear what that mechanism might be. Ceres is clearly a fascinating object, and understanding the story and origin of organics in these spots and elsewhere on Ceres will likely require future missions that can analyze or return samples."

For now the researchers hope this study will be helpful in informing upcoming sample return missions to near-Earth asteroids that are also thought to host water-bearing minerals and organic compounds.

The Japanese spacecraft Hayabusa2 is expected to arrive at the asteroid Ryugu in several weeks, and NASA's OSIRIS-REx mission is due to reach the asteroid Bennu in August. Kaplan is currently a science team member with the OSIRIS-REx mission.

"I think the work that went into this study, which included new laboratory measurements of important components of primitive meteorites, can provide a framework of how to better interpret data of asteroids and make links between spacecraft observations and samples in our meteorite collection," Kaplan said.

"As a new member to the OSIRIS-REx team, I'm particularly interested in how this might apply to our mission."

Research Report: "New Constraints on the Abundance and Composition of Organic Matter on Ceres," Hannah H. Kaplan Ralph E. Milliken and Conel M. O'D. Alexander, 2018 May 21, Geophysical Research Letters


Related Links
Dawn at JPL
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
What it takes to discover small rocks in space
Tucson AZ (SPX) Jun 08, 2018
Once every month, on average, somewhere on Earth a fireball appears out of nowhere and for mere seconds, casts a blinding flash across the sky before it blows up in a thunderous explosion. It happened last Saturday over southern Africa, where a small space rock disintegrated in the night sky and - possibly - scattered debris on the ground, awaiting discovery by meteorite hunters. Despite their relative frequency, of all the small space rocks that have impacted Earth, only three have been spotted b ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Second Space Station mission for Alexander Gerst begins

Crew from Germany, US, Russia board ISS

New NASA position to focus on exploration of Moon, Mars and worlds beyond

Possible launch date of Russia's Nauka module to ISS

IRON AND ICE
Girls' Rocketry Challenge team wins three awards at national model rocketry competition

US Senate introduces measure to upgrade defense against hypersonic threats

First Engine Assembled for DARPA and Boeing Reusable Experimental Spaceplane

Russian Reusable Space Rocket Tests Scheduled for 2022

IRON AND ICE
Mars rover Opportunity hunkers down during dust storm

Regional dust storm is affecting Opportunity Mars rover

Opportunity rover sends transmission amid Martian dust storm

Minerology on Mars points to a cold and icy ancient climate

IRON AND ICE
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

IRON AND ICE
Lockheed Martin Announces $100 Million Venture Fund Increase

US FCC expands market access for SES O3b MEO constellation

Liftoff as Alexander Gerst returns to space

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

IRON AND ICE
Cooling by laser beam

New 3D printer can create complex biological tissues

Researchers mimic comet moth's silk fibers to make 'air-conditioned' fabric

Soaking up the water and the sweat - a new super desiccant

IRON AND ICE
Chandra Scouts Nearest Star System for Possible Hazards

Researchers discover a system with three Earth-sized planets

Researchers discover multiple alkali metals in unique exoplanet

The Clarke exobelt, a method to search for possible extraterrestrial civilizations

IRON AND ICE
Juno Solves 39-Year Old Mystery of Jupiter Lightning

NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby

Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.