Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




CHIP TECH
Organic ferroelectric molecule shows promise for memory chips, sensors
by Hannah Hickey for UW News
Seattle WA (SPX) Jan 29, 2013


Electrical response of the newly developed organic crystal. Jiangyu Li, UW.

At the heart of computing are tiny crystals that transmit and store digital information's ones and zeroes. Today these are hard and brittle materials. But cheap, flexible, nontoxic organic molecules may play a role in the future of hardware.

A team led by the University of Washington in Seattle and the Southeast University in China discovered a molecule that shows promise as an organic alternative to today's silicon-based semiconductors. The findings, published this week in the journal Science, display properties that make it well suited to a wide range of applications in memory, sensing and low-cost energy s

"This molecule is quite remarkable, with some of the key properties that are comparable with the most popular inorganic crystals," said co-corresponding author Jiangyu Li, a UW associate professor of mechanical engineering.

The carbon-based material could offer even cheaper ways to store digital information; provide a flexible, nontoxic material for medical sensors that would be implanted in the body; and create a less costly, lighter material to harvest energy from natural vibrations.

The new molecule is a ferroelectric, meaning it is positively charged on one side and negatively charged on the other, where the direction can be flipped by applying an electrical field. Synthetic ferroelectrics are now used in some displays, sensors and memory chips.

In the study the authors pitted their molecule against barium titanate, a long-known ferroelectric material that is a standard for performance. Barium titanate is a ceramic crystal and contains titanium; it has largely been replaced in industrial applications by better-performing but lead-containing alternatives.

The new molecule holds its own against the standard-bearer. It has a natural polarization, a measure of how strongly the molecules align to store information, of 23, compared to 26 for barium titanate. To Li's knowledge this is the best organic ferroelectric discovered to date.

A recent study in Nature announced an organic ferroelectric that works at room temperature. By contrast, this molecule retains its properties up to 153 degrees Celsius (307 degrees F), even higher than for barium titanate.

The new molecule also offers a full bag of electric tricks. Its dielectric constant - a measure of how well it can store energy - is more than 10 times higher than for other organic ferroelectrics. And it's also a good piezoelectric, meaning it's efficient at converting movement into electricity, which is useful in sensors.

The new molecule is made from bromine, a natural element isolated from sea salt, mixed with carbon, hydrogen and nitrogen (its full name is diisopropylammonium bromide). Researchers dissolved the elements in water and evaporated the liquid to grow the crystal. Because the molecule contains carbon, it is organic, and pivoting chemical bonds allow it to flex.

The molecule would not replace current inorganic materials, Li said, but it could be used in applications where cost, ease of manufacturing, weight, flexibility and toxicity are important.

Li is working on a number of projects relating to ferroelectricity. Last year he and his graduate student found the first evidence for ferroelectricity in soft animal tissue. He was co-author on a 2011 paper in Science that documents nanometer-scale switching in ferroelectric films, showing how such molecules could be used to store digital information.

"Ferroelectrics are pretty remarkable materials," Li said. "It allows you to manipulate mechanical energy, electrical energy, optics and electromagnetics, all in a single package."

He is working to further characterize this new molecule and explore its combined electric and mechanical properties. He also plans to continue the search for more organic ferroelectrics.

The joint first authors of the new paper are Yuanming Liu, a UW postdoctoral researcher in mechanical engineering, and Da-Wei Fu, a doctoral student working with co-corresponding author Ren-Gen Xiong at Southeast University. Other co-authors are Hong-Ling Cai, Qiong Ye, Wen Zhang and Yi Zhang at Southeast University; Xue-Yuan Chen at the Chinese Academy of Sciences; and Gianluca Giovannetti and Massimo Capone at the Italian National Simulation Centre.

.


Related Links
University of Washington
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
DARPA, Industry Collaborate to Knock Down Microelectronics Barriers
Washington DC (SPX) Jan 21, 2013
The inherent goodness of miniaturizing electronics has been key to a wide array of technology innovations and an important economic driver for several decades. For example, the seemingly endless shrinking of the transistor has allowed the semiconductor industry to place ever more devices on the same amount of silicon. Each time the size shrunk, transistors became faster and used less power, allo ... read more


CHIP TECH
US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

Mission would drag asteroid to the moon

CHIP TECH
Is there life on Mars?

Opportunity At Work At Whitewater Lake

Thawing Dry Ice Drives Groovy Action On Mars

Mars Rover Curiosity Uses Arm Camera at Night

CHIP TECH
TDRS-K Offers Upgrade to Vital Communications Net

How to predict the future of technology

Iran Manufacturing Hi-Tech Spacesuits

TDRS-K Offers Upgrade to Vital Communications Net

CHIP TECH
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

CHIP TECH
NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

ESA workhorse to power NASA's Orion spacecraft

Competition Hopes To Fine Tune ISS Solar Array Shadowing

CHIP TECH
Russia Set for Year's First Baikonur Space Launch Feb. 5

First Ariane 5 For 2013 Ready For Loading

Azerspace And Africasat-1a "fit" for Ariane 5 launch

NASA Selects Experimental Commercial Suborbital Flight Payloads

CHIP TECH
The Origin And Maintenance Of A Retrograde Exoplanet

New Evidence Indicates Auroras Occur Outside Our Solar System

Glitch has space telescope shut down

Earth-size planets common in galaxy

CHIP TECH
Laser-Plasma Process Gives Nanohybrid Remarkable Properties

DNA and quantum dots: All that glitters is not gold

Liquid metal makes silicon crystals at record low temperatures

Supercomputer sets computing record




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement