Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




EARLY EARTH
Oldest bit of crust firms up idea of a cool early Earth
by Staff Writers
Madison WI (SPX) Feb 26, 2014


A 4.4 billion-year-old zircon crystal is providing new insight into how the early Earth cooled from a ball of magma and formed continents just 160 million years after the formation of our solar system, much earlier than previously believed. The zircon, pictured here, is from the Jack Hills region of Australia and is now confirmed to be the oldest bit of the Earth's crust. Image courtesy John Valley.

With the help of a tiny fragment of zircon extracted from a remote rock outcrop in Australia, the picture of how our planet became habitable to life about 4.4 billion years ago is coming into sharper focus.

Writing in the journal Nature Geoscience, an international team of researchers led by University of Wisconsin-Madison geoscience Professor John Valley reveals data that confirm the Earth's crust first formed at least 4.4 billion years ago, just 160 million years after the formation of our solar system. The work shows, Valley says, that the time when our planet was a fiery ball covered in a magma ocean came earlier.

"This confirms our view of how the Earth cooled and became habitable," says Valley, a geochemist whose studies of zircons, the oldest known terrestrial materials, have helped portray how the Earth's crust formed during the first geologic eon of the planet. "This may also help us understand how other habitable planets would form."

The new study confirms that zircon crystals from Western Australia's Jack Hills region crystallized 4.4 billion years ago, building on earlier studies that used lead isotopes to date the Australian zircons and identify them as the oldest bits of the Earth's crust.

The microscopic zircon crystal used by Valley and his group in the current study is now confirmed to be the oldest known material of any kind formed on Earth.

The study, according to Valley, strengthens the theory of a "cool early Earth," where temperatures were low enough for liquid water, oceans and a hydrosphere not long after the planet's crust congealed from a sea of molten rock.

"The study reinforces our conclusion that Earth had a hydrosphere before 4.3 billion years ago," and possibly life not long after, says Valley.

The study was conducted using a new technique called atom-probe tomography that, in conjunction with secondary ion mass spectrometry, permitted the scientists to accurately establish the age and thermal history of the zircon by determining the mass of individual atoms of lead in the sample. Instead of being randomly distributed in the sample, as predicted, lead atoms in the zircon were clumped together, like "raisins in a pudding," notes Valley.

The clusters of lead atoms formed 1 billion years after crystallization of the zircon, by which time the radioactive decay of uranium had formed the lead atoms that then diffused into clusters during reheating.

"The zircon formed 4.4 billion years ago, and at 3.4 billion years, all the lead that existed at that time was concentrated in these hotspots," Valley says. "This allows us to read a new page of the thermal history recorded by these tiny zircon time capsules."

The formation, isotope ratio and size of the clumps - less than 50 atoms in diameter - become, in effect, a clock, says Valley, and verify that existing geochronology methods provide reliable and accurate estimates of the sample's age. In addition, Valley and his group measured oxygen isotope ratios, which give evidence of early homogenization and later cooling of the Earth.

"The Earth was assembled from a lot of heterogeneous material from the solar system," Valley explains, noting that the early Earth experienced intense bombardment by meteors, including a collision with a Mars-sized object about 4.5 billion years ago "that formed our moon, and melted and homogenized the Earth. Our samples formed after the magma oceans cooled and prove that these events were very early."

.


Related Links
University of Wisconsin-Madison
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
Evolution stuck in slime for a billion years
Hobart, Australia (SPX) Feb 24, 2014
Tasmanian researchers have revealed ancient conditions that almost ended life on Earth, using a new technique they developed to hunt for mineral deposits. The first life developed in the ancient oceans around 3.6 billion years ago, but then nothing much happened. Life remained as little more than a layer of slime for a billion years. Suddenly, 550 million years ago, evolution burst back in ... read more


EARLY EARTH
China Focus: Uneasy rest begins for China's troubled Yutu rover

China's Lunar Lander Still Operational

Is Yutu Stuck?

Japan's Pocari Sweat bound for the moon: maker

EARLY EARTH
NASA's Curiosity Mars Rover Views Striated Ground

NASA Mars Orbiter Views Opportunity Rover on Ridge

Curiosity Adds Reverse Driving for Wheel Protection

Curiosity Drives On After Crossing Martian Dune

EARLY EARTH
Last Shuttle Commander Virtually Flies Boeing CST-100 to ISS

DARPA Open Catalog Makes Agency-Sponsored Software and Publications Available to All

India unveils its own astronaut crew capsule, plans test launch

Orion Underway Recovery Testing Begins off the Coast of California

EARLY EARTH
The Next Tiangong

No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

EARLY EARTH
Cosmonauts on space station to turn teacher for Russian students

Space suit leak happened before, NASA admits

NASA Seeks US Industry Feedback on Options for Future ISS Cargo Services

NASA, International Space Station Partners Announce Future Crew Members

EARLY EARTH
Russia to Start Building New Manned Rocket Launch Pad in 2015

New Vostochny space center a key priority for Russian Far East

First Copernicus satellite at launch site

'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

EARLY EARTH
Kepler Mission Announces a Planet Bonanza, 715 New Worlds

Detection of Water Vapor in the Atmosphere of a Hot Jupiter

Water is Detected in a Planet Outside Our Solar System

NASA cries planetary 'bonanza' with 715 new worlds

EARLY EARTH
Penn Researchers 'Design for Failure' With Model Material

In the eye of a chicken, a new state of matter comes into view

USAF reveals 'neighborhood watch' satellite program

Science publisher fooled by gibberish papers




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.