Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




TECH SPACE
ORNL recipe for oxide interface perfection opens path to novel materials
by Staff Writers
Oak Ridge TN (SPX) Nov 20, 2012


File image.

By tweaking the formula for growing oxide thin films, researchers at the Department of Energy's Oak Ridge National Laboratory achieved virtual perfection at the interface of two insulator materials.

This finding, published in the journal Advanced Materials, could have significant ramifications for creation of novel materials with applications in energy and information technologies, leading to more efficient solar cells, batteries, solid oxide fuel cells, faster transistors and more powerful capacitors.

The research team, led by ORNL's Ho Nyung Lee, demonstrated that a single unit cell layer of lanthanum aluminate grown on a strontium titanate substrate is sufficient to stabilize a chemically and atomically sharp interface. A unit cell is the smallest group of atoms that possess the properties of a crystalline material.

"This means that we can now create new properties by precisely conditioning the boundary in the process of stacking different oxides on top of each other," said Lee, a member of the Materials Science and Technology Division.

What's especially noteworthy is that a layer even one unit cell thick could serve as a buffer and dramatically improve the interface quality.

For this research, Lee and colleagues used pulsed laser deposition to deposit lanthanum aluminate thin films on strontium titanate substrates.

They were able to demonstrate that a mundane variable such as the oxygen pressure during deposition of lanthanum aluminate is the key factor for achieving atomically sharp interfaces and changing the interface properties on a single unit cell level.

Importantly, this finding is not limited to fine-tuning this particular interface, but also applies to a broad range of oxide heterostructures in a class of minerals known as perovskites.

The discovery of electrical properties in oxides - ordinarily insulators - has generated excitement and potentially creates the possibility that oxide electronics could become an alternative to the current semiconductor technology based on silicon.

Making this finding possible was Argonne National Laboratory's Advanced Photon Source and the extreme brightness of synchrotrons that allowed scientists to study the structure and composition at the interface.

"The sophisticated surface X-ray diffraction methods available at the Advanced Photon Source were key to zeroing in on the origin of the interface behavior," said co-author and colleague Gyula Eres.

While previous research with lanthanum aluminate thin film growth used low oxygen pressures, Lee and colleagues systematically explored the effects of oxygen pressure in a wide range.

They determined that a shielding layer of lanthanum aluminate grown at high oxygen pressure followed by continued growth at a lower pressure resulted in a highly ordered atomically and chemically sharp - essentially defect-free - interface.

Other ORNL authors of the paper, titled "Atomic Layer Engineering of Perovskite Oxides for Chemically Sharp Heterointerfaces," are Woo Seok Choi, the first author, Christopher Rouleau and Sung Seok Seo. Other institutions contributing to the paper are the University of Kentucky, Argonne National Laboratory and the University of Science and Technology of China.

.


Related Links
Oak Ridge National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Erosion has a point and an edge
New York NY (SPX) Nov 14, 2012
Erosion caused by flowing water does not only smooth out objects, but can also form distinct shapes with sharp points and edges, a team of New York University researchers has found. Their findings, which appear in the latest edition of the journal the Proceedings of the National Academy of Sciences (PNAS), reveal the unexpected ways that erosion can affect landscapes and artificial materials. ... read more


TECH SPACE
China's Chang'e-3 to land on moon next year

Moon crater yields impact clues

Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

TECH SPACE
Martian And Terran History Finding a common denominator

Meteorites reveal warm water existed on Mars

NASA Rover Providing New Weather and Radiation Data About Mars

CU LASP package ready for MAVEN integration bound for Mars

TECH SPACE
NASA Selects Information Technology Flight Operations Support Contract

SciTechTalk: All work and no play?

Get some bed rest - all 21 days of it

Latest China military hardware displayed at airshow

TECH SPACE
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

TECH SPACE
Three ISS crew return to Earth in Russian capsule

Station Crew Off Duty After Undocking

Space station command changes

Russia restores space contact after cable rupture

TECH SPACE
France, Germany seek Ariane compromise at ESA space meet

ILS Launches the EchoStar XVI Satellite

Arianespace's fourth Spaceport mission with Soyuz ready for fueling

Ariane 5's sixth launch of 2012

TECH SPACE
Rare image of Super-Jupiter sheds light on planet formation

Astronomers Directly Image Massive Star's 'Super-Jupiter'

NASA's Kepler Wraps Prime Mission, Begins Extension

Lowell astronomer, collaborators point the way for exoplanet search

TECH SPACE
Bug repellent for supercomputers proves effective

Keeneland Project Deploys New GPU Supercomputing System for the National Science Foundation

Lockheed Martin Expands Range Of Cloud Computing Services for UK Government

Invisibility cloaking to shield floating objects from waves




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement