. 24/7 Space News .
NANO TECH
Team explores nanoscale objects with microwave microscopy
by Staff Writers
Oak Ridge TN (SPX) Mar 25, 2016


Nanoscale imaging in liquids is critical for understanding key electrochemical processes and the design of rechargeable batteries. A novel approach using a combination of microwaves, a scanning probe and ultrathin membranes avoids the radiation damage caused by imaging methods employing highly energetic X-ray and electron beams. Image courtesy Oak Ridge National Laboratory, U.S. Dept. of Energy. Image by Alexander Tselev and Andrei Kolmakov. For a larger version of this image please go here.

When lots of energy hits an atom, it can knock off electrons, making the atom extremely chemically reactive and initiating further destruction. That's why radiation is so dangerous. It's also why high-resolution imaging techniques that use energetic electron beams and X-rays can alter, even obliterate, the samples they explore. For example, monitoring battery dynamics using electron microscopy can introduce artifacts that interfere with electrochemical processes. Another case in point: Employing X-ray spectroscopy to see inside a living cell annihilates that cell.

Now, researchers at the Department of Energy's Oak Ridge National Laboratory and the National Institute of Standards and Technology have demonstrated a nondestructive way to observe nanoscale objects and processes in conditions simulating their normal operating environments.

They start with an "environmental chamber" to encapsulate a sample in a liquid. The chamber has a window made of an ultrathin membrane (8 to 50 billionths of a meter, or nanometers, thick). The tip of a scanning probe microscope moves across the membrane, injecting microwaves into the chamber. The device records where the microwave signal was transmitted versus impeded and creates a high-resolution map of the sample.

Because the injected microwaves are 100 million times weaker than those of a home microwave oven, and they oscillate in opposite directions several billions of times each second so potentially destructive chemical reactions cannot proceed, the ORNL-NIST technique produces only negligible heat and does not destroy the sample. The scientists report their novel approach of combining ultrathin membranes with microwaves and a scanning probe--called scanning microwave impedance microscopy, or sMIM--in the journal ACS Nano.

"Our imaging is nondestructive and free from the damage frequently caused to samples, such a living cells or electrochemical processes, by imaging with X-ray or electron beams," said first author Alexander Tselev. With colleagues Anton Ievlev and Sergei Kalinin at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL, he performed high-resolution microwave imaging and analysis.

"Its spatial resolution is better than what is achievable with optical microscopes for similar in-liquid samples. The paradigm can become instrumental for gaining important insights into electrochemical phenomena, living objects and other nanoscale systems existing in fluids."

For example, microwave microscopy may provide a noninvasive way to explore important surface phenomena occurring on the scale of billionths of a meter, such as the formation of a thin coating that protects and stabilizes a new battery's electrode but cannibalizes its electrolyte to make the coating.

Microwave microscopy, which allows scientists to watch processes as they're happening without stopping them cold, makes it possible to characterize ongoing chemical reactions at different stages.

"At NIST, we developed environmental chambers with ultra-thin membranes to perform electron microscopy and other analytical techniques in liquids," said senior author Andrei Kolmakov. He and colleague Jeyavel Velmurugan at NIST's Center for Nanoscale Science and Technology made chambers to enclose objects and processes in liquid environments and performed preliminary characterizations to identify biologically interesting cells.

"Conversations between the ORNL and NIST scientists resulted in the idea to try nondestructive microwaves so the environmental chambers could be used for broader studies. There are very few groups in the world that can image with high resolution using microwaves, and CNMS is among them. The design of the experiment and the adjustment of the technology for imaging required ORNL expertise."

The ORNL and NIST researchers combined existing technologies in new ways and came up with a unique approach that may prove useful in medical diagnostics, forensics and materials research.

"For the first time, we are able to image through a very thin membrane," Tselev said. "Microwaves and scanning probe microscopy allowed that."

The right tool for the job
To image highly ordered materials, such as crystals, researchers can employ techniques such as neutron scattering and X-ray diffraction. To image less ordered materials, such as living cell membranes, or processes, such as ongoing chemical reactions, the ORNL-NIST team collaborated closely to innovate the right tool for the job.

Once the scientists had combined the environmental chamber with a scanning microwave capability, they investigated a model system to see if their new technique would work and to set a baseline for future experiments. They used the sMIM system to map polystyrene particles self-assembling into densely packed structures in a liquid.

With that proof-of-principle achieved, they then asked if their system could discriminate between silver, which is an electrical conductor, and silver oxide, an insulator, during electroplating (an electrically induced reaction to deposit silver onto a surface).

Optical microscopy and scanning electron microscopy are not good at distinguishing silver from silver oxide. Microwave microscopy, in contrast, unambiguously distinguished insulators from conductors. Next, the researchers needed to know that observation with sMIM would not introduce artifacts, such as silver precipitation, that scanning electron microscopy may cause--a problem that is not trivial.

"One paper lists 79 chemical reactions induced by electrons in water," Tselev noted. Generally, scanning electron microscopy will not allow scientists to follow silver precipitation to form growing dendrites because that technique is destructive. "Dendrites behave very badly under an electron beam," Tselev said. With sMIM, electrochemical artifacts and process stoppage did not occur. "Whereas sMIM is not the only nondestructive technique, in many cases it may be the only one which can be used."

Next the researchers imaged living cells. Because healthy and sick cells differ in properties such as the ability to store electrical energy, intracellular mapping could provide a basis for diagnosis. "Tomographic imaging--resolution across the depths--is possible with microwaves as well," Tselev said.

"If you have microwaves, you can go variably in depth and get a lot of information about the living biological cell membrane itself--shape and properties that depend very much on the chemical composition and water content, which in turn depend on whether the cell is healthy or not." The researchers were able to detect properties distinguishing healthy from sick cells.

In the current experiments, the system allowed observation close to surfaces. "That doesn't mean we'll not be able to see deeper if we redesign the experiment," Tselev said. "Microwaves can penetrate very deeply. The depth is basically limited by the contact size between the probe and the environmental cell membrane."

Next the researchers will try to improve the sensitivity and spatial resolution of their system. Because thinning the walls of the environmental chamber would improve the resolution, the researchers will try making the walls with graphene or hexagonal boron nitride, both of which are only one atom thick. They will also use different probes and image-processing algorithms to improve resolution at different depths.

Research paper: "Seeing Through Walls at the Nanoscale: Microwave Microscopy of Enclosed Objects and Processes in Liquids."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oak Ridge National Laboratory
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
New research shows how nanowires can be formed
Lund, Sweden (SPX) Mar 24, 2016
In an article published in Nature researchers at Lund University in Sweden show how different arrangements of atoms can be combined into nanowires as they grow. Researchers learning to control the properties of materials this way can lead the way to more efficient electronic devices. Nanowires are believed to be important elements in several different areas, such as in future generations o ... read more


NANO TECH
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

NANO TECH
ExoMars probe imaged en route to Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

NANO TECH
China regulator frowns on Anbang's hotel bids: report

Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

Accelerating discovery with new tools for next generation social science

NANO TECH
China to establish first commercial rocket launch company

China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

NANO TECH
Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Three new members join crew of International Space Station

Grandpa astronaut to break Scott Kelly's space record

Three new crew, including US grandpa, join space station

NANO TECH
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

NANO TECH
VLA shows earliest stages of planet formation

VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

NANO TECH
Uncovering bacterial role in platinum formation

'Invulnerable' coatings for cutting tools from gas

Detecting radioactive material from a remote distance

New way to control particle motions on 2-D materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.