Subscribe free to our newsletters via your
. 24/7 Space News .




STATION NEWS
Space station worms help battle muscle and bone loss
by Bill Hubscher
Houston TX (SPX) Jan 14, 2015


Caenorhabditis elegans - a millimeter-long roundworm with a genetic makeup scientists understand - will be central to a pair of Japanese Aerospace Agency investigations into muscle and bone loss of astronauts on the International Space Station in the first few months of 2015. Image courtesy NASA.

It is said that great things can come in small packages. In this case, one key to keeping astronauts healthy on long-duration space missions may be found in a tiny roundworm barely a millimeter long.

Two Japanese Aerospace Exploration Agency (JAXA) investigations on the International Space Station help researchers seek clues to physiological problems found in astronauts by studying Caenorhabditis elegans - a millimeter-long roundworm that, like the fruit fly, is widely used as a model for larger organisms.

The results of the investigation could lead to new treatments for bone and muscle loss in humans living in space. Findings may also be beneficial to people on Earth suffering from muscle and bone diseases.

"Spaceflight-induced health changes, such as decreases in muscle and bone mass, are a major challenge facing our astronauts," said Julie Robinson, NASA's Chief Scientist for the International Space Station Program Office at NASA's Johnson Space Center in Houston.

"We investigate solutions on the station not only to keep astronauts healthy as the agency considers longer space exploration missions, but also to help those on Earth who have limited activity as a result of aging or illness."

We rely on gravity to develop stronger muscles and bones. Athletes will lift weights - resisting the pull of gravity - to make their bodies even stronger. When gravity is greatly reduced - as in spaceflight - we don't use those muscles to resist the force of gravity, and muscles and bones can slowly start to deteriorate. Even with assigned daily exercise, the bodies of astronauts in microgravity lose bone and muscle mass.

This is the same problem facing people who are on prolonged bed rest. The inactivity, even removing simple daily movement, can have a negative effect on the bones and muscles of the infirm or elderly. Patients on prolonged bed rest experience muscle atrophy, bone density loss and changes in metabolism, similar to the effects of long-duration spaceflight.

One investigation, scheduled for launch to the station on the SpaceX's sixth space station resupply mission in 2015, is called Alterations of C. elegans muscle fibers by microgravity (Nematode Muscle). It will look into the muscle fibers and cytoskeleton of the roundworm to clarify how those physiological systems alter in response to microgravity.

Space station crew members will grow these worms in microgravity, as well as another batch in one-g using a centrifuge. This will simulate the force of gravity while the C. elegans remain physically in orbit, allowing a direct comparison of the effects of different gravity levels on organisms in space.

A different JAXA investigation currently on station is taking a much closer look at C. elegans by examining their DNA. The Epigenetics in spaceflown C. elegans (Epigenetics) study launched to the space station on the SpaceX CRS-5 resupply mission.

It requires astronauts on the orbiting laboratory to grow four generations of the worm, with adults and larvae from each generation preserved at different points during their lifespan. The worms will return to Earth in the SpaceX Dragon spacecraft in January.

"The astronauts will cultivate multiple generations of the organism, so we can examine the organisms in different states of development," said Atsushi Higashitani, principal investigator for both investigations with Tohoku University in Miyagi, Japan.

"Our studies will help clarify how and why these changes to health take place in microgravity and determine if the adaptations to space are transmitted from one cell generation to another without changing the basic DNA of an organism. Then, we can investigate if those effects could be treated with different medicines or therapies."

Worms grown in each investigation will be compared to similar batches grown in a laboratory in Japan. Understanding the molecular changes that take place in microgravity could help researchers develop treatments or therapies to counteract the physical changes associated with aging and extended bed rest, such as muscle atrophy or osteoporosis, and could help develop treatments or exercises for astronauts on long voyages.

This simple, tiny roundworm could lead to a cure for symptoms affecting millions of the aging and infirm population of Earth, and the astronauts orbiting it, potentially offering a solution to a major problem in an extremely small package.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
NASA Johnson Space Center
Station at NASA
Station and More at Roscosmos
S.P. Korolev RSC Energia
Watch NASA TV via Space.TV
Space Station News at Space-Travel.Com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STATION NEWS
Fresh supplies and experiments for Samantha
Paris (ESA) Jan 14, 2015
Yesterday, ESA astronaut Samantha Cristoforetti and NASA astronaut Butch Wilmore captured the Dragon spacecraft with its supplies and new experiments for the six astronauts living 400 km above our planet. Samantha assisted Butch as he operated the International Space Station's 17 m-long robotic arm to capture the five-tonne supply vessel floating 10 m from the weightless research centre. T ... read more


STATION NEWS
Service module of China's lunar orbiter enters 127-minute orbit

Service Module of Chinese Probe Enters Lunar Orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

STATION NEWS
Crystal-Rich Rock 'Mojave' is Next Mars Drill Target

Russia-EU Mars Research Program to Be Completed

Mars is warmer than some parts of the U.S. and Canada

NASA Mars Rover Opportunity Climbs to High Point on Rim

STATION NEWS
Long duration weightlessness in space induces a blood shift

Experts explore the medical safety needs of civilian space travel

NASA, Nissan to Create Interplanetary Driverless Vehicles

The 'human' side of robots at electronics show

STATION NEWS
China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

STATION NEWS
Astronauts take shelter after alarm at space station

Russia delays decision on using ISS after 2020

SpaceX delivers late Xmas gifts to Space Station

Space station worms help battle muscle and bone loss

STATION NEWS
Firefly Space Systems and NASA have Inked Space Act Agreement

Vega ready to launch ESA spaceplane

SpaceX CEO Elon Musk wants to shake up satellite industry

Soyuz Installed at Baikonur, Expected to Launch Wednesday

STATION NEWS
Ground-breaking research to discover new planets

A twist on planetary origins

NASA releases retro-styled travel posters for newly discovered planets

NameExoWorlds contest opens

STATION NEWS
Integrated space-group and crystal-structure determination

Moving origami techniques forward for self-folding 3-D structures

Raytheon's enhanced AESA radar a boon for F/A-18 aircraft

New Satellite Technologies For Cleaner Low Orbits




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.