. 24/7 Space News .
STELLAR CHEMISTRY
New use for telecommunications networks: Helping scientists peer into deep space
by Staff Writers
Washington DC (SPX) Feb 07, 2018

illustration only

For the first time, researchers have demonstrated that a stable frequency reference can be reliably transmitted more than 300 kilometers over a standard fiber optic telecommunications network and used to synchronize two radio telescopes. Stable frequency references, which are used to calibrate clocks and instruments that make ultraprecise measurements, are usually only accessible at facilities that generate them using expensive atomic clocks. The new technology could allow scientists anywhere to access the frequency standard simply by tapping into the telecommunications network.

The ability to send stable frequency references over the telecommunications network could be particularly useful for radio telescope arrays such as the Square Kilometer Array (SKA), an international effort to build the world's largest radio telescope using arrays in Australia and South Africa. When complete, SKA will detect faint radio waves from deep space with a sensitivity about 50 times greater than that of the Hubble telescope. Individual radio telescopes will be linked to create a total collecting area of about 1 million square meters.

Linking radio telescopes in an array requires that each telescope have access to an atomic clock to record the precise time at which a signal is detected from an object in space.

Focusing all the telescopes on the same object and then calculating the slight differences in the time for the signal to reach each telescope allows researchers to combine all the observations and pinpoint the object's location and other characteristics. Stable transmitted references could be used to calibrate the relative time at each telescope, eliminating the need for multiple atomic clocks in a radio telescope array.

In Optica, The Optical Society's journal for high impact research, researchers from a consortium of Australian institutions report on the successful transmission of a stable frequency reference between two radio telescopes via a fiber link and demonstrate that the technique's performance is superior to the use of an atomic clock at each telescope.

The consortium included Australia's Academic and Research Network (AARNet), the Australian National University, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), the National Measurement Institute, Macquarie University and the University of Adelaide.

The results show that the technique is capable of compensating for signal fluctuations in the fiber optic network introduced by environmental factors such as temperature changes or vibrations. The demonstration was even performed over a network that was transmitting live telecommunications traffic at the same time.

Testing with live network traffic
"By running the experiment on optical fibers also carrying normal traffic, we showed that transmitting the stable frequency standard doesn't affect the data or telephone calls on the other channels," said Kenneth Baldwin, a member of the research team from the Australian National University.

"This is necessary to gain the cooperation of the telecommunications companies that own these fiber networks."

Importantly, the new technique doesn't require any substantial changes to the rest of the fiber optic network and is easy to implement. To keep the frequency stable during transmission, the researchers send the signal through the network to a destination and then reflect it back. The returning signal is used to determine if any changes occurred. After each round trip, any transmitted frequency shift is passively subtracted to exactly compensate for the measured changes.

For every 100 kilometers of fiber, the round trip takes about 1 millisecond. Even though the compensation process happens very quickly, the time on the receiving end can drift during the round trips. To solve this problem, a quartz oscillator at the remote location keeps the time steady between round trips.

"The frequency of the quartz oscillator will also eventually drift, so our unique process combines local stabilization with the quartz oscillator for short time lengths, with the longer - greater than round trip time - stabilization provided by the transmitted stable frequency reference technique," said Baldwin.

"This highly stable method for transmitting the frequency reference allows an atomic clock, which cost around two hundred thousand dollars, to be replaced with a system that only costs a few tens of thousand dollars."

Demonstrating long-distance transmission
To demonstrate their method, the researchers began with a type of atomic clock known as a hydrogen maser located at the CSIRO Australia Telescope Compact Array (ATCA). They imprinted the radio frequency reference signal from the maser onto a laser beam that then traveled through a 155-kilometer AARNet fiber and several amplification stages to a second radio telescope, and back again. Once the compensation process began, the reference was picked up by the radio telescope at the other end of the connection.

The researchers used the stable frequency reference to calibrate both telescopes, which were used to examine the same object in space. They found that rather than the stable frequency signal limiting the performance of the telescopes, atmospheric differences between the two locations was the limiting factor.

To eliminate atmospheric interference and better understand how the new method improved the telescope performance, the researchers then used just one telescope antenna at the ATCA fitted with two separate receivers to take measurements. This "split antenna" method allowed one receiver stabilized by the hydrogen maser to be compared with the other receiver stabilized using the stable frequency reference that was sent on a 310- kilometer round trip through the fiber.

"Our experiments showed that the transmitted frequency reference was very stable, significantly more stable than the earth's atmosphere," said Baldwin.

"Our approach of exactly replicating the stable frequency signal from one atomic clock performed at least as well as two atomic clocks, which can exhibit slight differences from each other."

The researchers say that their demonstration shows that the new method is ready for implementation by radio astronomers who want to avoid using multiple atomic clocks across a telescope array. The method can be used over even longer distances by using more amplifiers to boost the signal. This would also allow stable frequency references to be broadcast across a national fiber optic network, where any scientist with access to a telecommunications network could use them.

"When atomic clocks were first invented, no one thought that they would provide timing standards that would be used for GPS navigation, for example," said Baldwin.

"We hope that in the same way, easy access to frequency standards that are just as stable as those found in a national measurement laboratory will be an enabling technology for many applications that require precise timing and accurate frequency measurements."

Research Report: Y. He, K. G. H. Baldwin, B. J. Orr, R. B. Warrington, M. J. Wouters, A. N. Luiten, P. Mirtschin, T. Tzioumis, C. Phillips, J. Stevens, B. Lennon, S. Munting, G. Aben, T. Newlands, T. Rayner, "Long-distance telecom-fiber transfer of a radio-frequency reference for radio astronomy," Optica, Volume 5, Issue 2, 138-146 (2018).


Related Links
The Optical Society
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Natural telescope sets new magnification record
Manoa HI (SPX) Feb 02, 2018
Extremely distant galaxies are usually too faint to be seen, even by the largest telescopes. But nature has a solution - gravitational lensing, predicted by Albert Einstein and observed many times by astronomers. Now, an international team of astronomers led by Harald Ebeling from the University of Hawai?i has discovered one of the most extreme instances of magnification by gravitational lensing. Using the Hubble Space Telescope (HST) to survey a sample of huge clusters of galaxies, the team found ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NanoRacks adds Thales Alenia Space to team up on Commercial Space Station Airlock Module

ESA and Airbus sign partnership agreement for new ISS commercial payload platform Bartolomeo

All-in-one service for the Space Station

Marshall tech cleans your air, keeps your beer cold and helps with math

STELLAR CHEMISTRY
Elon Musk, visionary Tesla and SpaceX founder

Japan Successfully Launches World's Smallest Carrier Rocket

What's next for SpaceX?

Final request for proposal released for Air Force launch services contract

STELLAR CHEMISTRY
HKU scientist makes key discoveries in the search for life on Mars

Tiny Crystal Shapes Get Close Look From Mars Rover

NASA leverages proven technologies to build agency's first planetary wind lidar

Mars Reconnaissance Orbiter capatures images of splitting slope streaks

STELLAR CHEMISTRY
Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

STELLAR CHEMISTRY
UK companies seek cooperation with Russia in space technologies

GovSat-1 Successfully Launched on SpaceX Falcon 9 Rocket

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

STELLAR CHEMISTRY
Helping authorities respond more quickly to airborne radiological threats

Singapore takes next step towards implementing world's first space-based VHF communications

A Detailed Timeline of The IMAGE Mission Recovery

Researchers take terahertz data links around the bend

STELLAR CHEMISTRY
Are you rocky or are you gassy

UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

Viruses are falling from the sky

What the TRAPPIST-1 Planets Could Look Like

STELLAR CHEMISTRY
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.