Subscribe free to our newsletters via your
. 24/7 Space News .

New theory points to 'zombie vortices' as key step in star formation
by Sarah Yang for Berkeley News
Berkeley CA (SPX) Aug 22, 2013

Illustration of the near stellar environment of the star Beta Pictoris. This image is based upon observations made with the Goddard High Resolution Spectrograph aboard the Hubble Space Telescope. (Image by Dana Berry, Space Telescope Science Institute)

new theory by fluid dynamics experts at the University of California, Berkeley, shows how "zombie vortices" help lead to the birth of a new star. Reporting Aug. 20 in the journal Physical Review Letters, a team led by computational physicist Philip Marcus shows how variations in gas density lead to instability, which then generates the whirlpool-like vortices needed for stars to form.

Astronomers accept that in the first steps of a new star's birth, dense clouds of gas collapse into clumps that, with the aid of angular momentum, spin into one or more Frisbee-like disks where a protostar starts to form. But for the protostar to grow bigger, the spinning disk needs to lose some of its angular momentum so that the gas can slow down and spiral inward onto the protostar. Once the protostar gains enough mass, it can kick off nuclear fusion.

"After this last step, a star is born," said Marcus, a professor in the Department of Mechanical Engineering.

What has been hazy is exactly how the cloud disk sheds its angular momentum so mass can feed into the protostar.

Destabilizing forces
The leading theory in astronomy relies on magnetic fields as the destabilizing force that slows down the disks. One problem in the theory has been that gas needs to be ionized, or charged with a free electron, in order to interact with a magnetic field. However, there are regions in a protoplanetary disk that are too cold for ionization to occur.

"Current models show that because the gas in the disk is too cool to interact with magnetic fields, the disk is very stable," said Marcus. "Many regions are so stable that astronomers call them dead zones - so it has been unclear how disk matter destabilizes and collapses onto the star."

The researchers said current models also fail to account for changes in a protoplanetary disk's gas density based upon its height.

"This change in density creates the opening for violent instability," said study co-author Pedram Hassanzadeh, who did this work as a UC Berkeley Ph.D. student in mechanical engineering. When they accounted for density change in their computer models, 3-D vortices emerged in the protoplanetary disk, and those vortices spawned more vortices, leading to the eventual disruption of the protoplanetary disk's angular momentum.

"Because the vortices arise from these dead zones, and because new generations of giant vortices march across these dead zones, we affectionately refer to them as 'zombie vortices,'" said Marcus. "Zombie vortices destabilize the orbiting gas, which allows it to fall onto the protostar and complete its formation."

The researchers note that changes in the vertical density of a liquid or gas occur throughout nature, from the oceans - where water near the bottom is colder, saltier and denser than water near the surface - to our atmosphere, where air is thinner at higher altitudes.

These density changes often create instabilities that result in turbulence and vortices such as whirlpools, hurricanes and tornadoes. Jupiter's variable-density atmosphere hosts numerous vortices, including its famous Great Red Spot.

Connecting the steps leading to a star's birth
This new model has caught the attention of Marcus's colleagues at UC Berkeley, including Richard Klein, adjunct professor of astronomy and a theoretical astrophysicist at the Lawrence Livermore National Laboratory. Klein and fellow star formation expert Christopher McKee, UC Berkeley professor of physics and astronomy, were not part of the work described in Physical Review Letters, but are collaborating with Marcus to put the zombie vortices through more tests.

Klein and McKee have worked over the last decade to calculate the crucial first steps of star formation, which describes the collapse of giant gas clouds into Frisbee-like disks. They will collaborate with Marcus's team by providing them with their computed velocities, temperatures and densities of the disks that surround protostars. This collaboration will allow Marcus's team to study the formation and march of zombie vortices in a more realistic model of the disk.

"Other research teams have uncovered instabilities in protoplanetary disks, but part of the problem is that those instabilities required continual agitations," said Klein. "The nice thing about the zombie vortices is that they are self-replicating, so even if you start with just a few vortices, they can eventually cover the dead zones in the disk."

The other UC Berkeley co-authors on the study are Suyang Pei, Ph.D. student, and Chung-Hsiang Jiang, postdoctoral researcher, in the Department of Mechanical Engineering.


Related Links
University of California, Berkeley
Stellar Chemistry, The Universe And All Within It

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Observations tie colliding neutron stars to 'kilonova' phenomenon
Greenbelt, Md. (UPI) Aug 5, 2013
Astronomers say the Hubble Space Telescope has detected a Gamma-ray burst from an explosive event scientists have dubbed a kilonova. Detected using infrared light, it represents a new type of stellar explosion produced from the merger of two compact objects, most likely neutron stars, NASA reported Monday. Kilonovas are about 1,000 times brighter than a nova, which is caused by t ... read more

NASA Prepares for First Virginia Coast Launch to Moon

NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

International Space Agencies Outline Steps to Take Humans to Mars

Snapping Pictures of the Martian Moons

Mars Rover Opportunity Working at Edge of 'Solander'

MRO Swapping Motion-Sensing Units

NSBRI and NASA Reduce Space Radiation Risks by Soliciting for Center of Space Radiation Research

Next Generation of Explorers Takes the Stage

Has Voyager 1 Left The Solar System?

Groundbreaking space exploration research at UH

China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

Cosmonauts Complete Spacewalk, Unfold Russian Flag in Space

Italian astronaut recounts spacewalk drowning terror

ISS Boosting Biological Research in Orbit

Japanese Cargo Craft Captured, Berthed to ISS

NASA Explores New Uses for Historic Launch Structures

Telemetry data confirms launch of South Korean satellite

ISRO pins hopes on GSLV-D5

Lockheed Martin Selects CubeSat Integrators for Athena to Enhance Launch Systems Integration

Study: Planets might be 'born free' without a parent star

Distant planet sets speed record by orbiting its star every 8.5 hours

Kepler planet hunter spacecraft is beyond repair: NASA

Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

U.S. firm releases $1,400 scanner to create 3-D printing files

Boeing Communications Relay Satellites Complete Space, Earthly Testing

Mobius strip ties liquid crystal in knots to produce tomorrow's materials and photonic devices

The world's future tallest skyscrapers: who will be first to break the 1,000-meter mark?

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement