. 24/7 Space News .
INTERNET SPACE
New technology colors in the infrared rainbow
by Staff Writers
Durham NC (SPX) Nov 17, 2015


A closer look at a coated surface using a scanning electron microscope shows a tiny silver nanocubes sitting on a gold surface. Image courtesy Maiken Mikkelsen and Gleb Akselrod, Duke University. For a larger version of this image please go here.

Researchers have devised a technology that can bring true color to infrared imaging systems, like the one used to track Arnold Schwarzenegger through the jungle in the movie "Predator." Traditional infrared imaging systems may look colorful on screen, with warm objects appearing redder and whiter than their surroundings. But these images are not created from actual colors. They are based on the amount of thermal radiation - or infrared light - that the camera captures.

The ability to identify different wavelengths - or colors - of the infrared spectrum would capture much more information about the objects being imaged, such as their chemical composition.

In a new study, a team lead by Maiken H. Mikkelsen, the Nortel Networks Assistant Professor of Electrical and Computer Engineering and Physics at Duke University, demonstrates perfect absorbers for small bands of the electromagnetic spectrum from visible light through the near infrared. The fabrication technique is easily scalable, can be applied to any surface geometry and costs much less than current light absorption technologies.

Once adopted, the technique would allow advanced thermal imaging systems to not only be produced faster and cheaper than today's counterparts, but to have higher sensitivity. It could also be used in a wide variety of other applications, such as masking the heat signatures of objects. The study was published online in Advanced Materials.

"By borrowing well-known techniques from chemistry and employing them in new ways, we were able to obtain significantly better resolution than with a million-dollar state-of-the-art electron beam lithography system," said Mikkelsen.

"This allowed us to create a coating that can fine-tune the absorption spectra with a level of control that hasn't been possible previously, with potential applications from light harvesting and photodetectors to military applications."

"This doesn't require top-down fabrication such as expensive lithography techniques and we don't make this in a clean room," added Gleb Akselrod, a postdoctoral researcher in Mikkelsen's laboratory. "We build it from the bottom up, so the whole thing is inherently cheap and very scalable to large areas."

The technology relies on a physics phenomenon called plasmonics. The researchers first coat a surface with a thin film of gold through a common process like evaporation. They then put down a few-nanometer-thin layer of polymer, followed by a coating of silver cubes, each one about 100 nanometers (billionths of a meter) in size.

When light strikes the new engineered surface, a specific color gets trapped on the surface of the nanocubes in packets of energy called plasmons, and eventually dissipates into heat. By controlling the thickness of the polymer film and the size and number of silver nanocubes, the coating can be tuned to absorb different wavelengths of light from the visible spectrum to the near infrared.

"What is so attractive about the film/nanocube system is its remarkable simplicity and flexibility," said David R. Smith, the James B. Duke Professor of Electrical and Computer Engineering at Duke.

"The unique absorbing properties of the nanocubes can be predicted with straightforward formulas, making it easy to quickly determine recipes for surface coatings that provide desired spectral properties. The nanocube system eliminates, or at least vastly reduces, cost and manufacturing issues, so that we can focus on impacting exciting application areas such as photovoltaics or thermal coatings."

For an example of the latter, if you can control the colors of light that a material absorbs, then you can also control the wavelengths of light that it emits. By making the nanocubes larger to absorb wavelengths corresponding to thermal radiation, this technology could suppress or mask an object's natural thermal radiation, otherwise known as "black body radiation."

Coating photodetectors to absorb only specific wavelengths of infrared light would allow novel and cheap cameras to be made that could see different infrared colors.

"We haven't made the device that's actually going to take that energy and convert it to an electrical signal yet," said Akselrod. "That's going to be the next step."

"Large-Area Metasurface Perfect Absorbers from Visible to Near-Infrared." Gleb M. Akselrod, Jiani Huang, Thang B. Hoang, Patrick T. Bowen, Logan Su, David R. Smith, Maiken H. Mikkelsen. Advanced Materials, 2015. DOI: 10.1002/adma.201503281


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Duke University
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
Amplifying and removing visual variation in digital imagery
Boston MA (SPX) Nov 15, 2015
At the Siggraph Asia conference this week, MIT researchers presented a pair of papers describing techniques for either magnifying or smoothing out small variations in digital images. The techniques could be used to produce more polished images for graphic-design projects, or, applied in the opposite direction, they could disclose structural defects, camouflaged objects, or movements invisible to ... read more


INTERNET SPACE
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

INTERNET SPACE
Upgrade Helps NASA Study Mineral Veins on Mars

Dust devils detected by seismometer could guide Mars mission

Amnesia Event Slows Down Opportunity Robotic Arm Work

Swiss Camera Leaves for Mars

INTERNET SPACE
Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

Orion Service Module Stacking Assembly Secured For Flight

Global partnerships in orbit support economic growth on and off the Earth

INTERNET SPACE
China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

New rocket readies for liftoff in 2016

INTERNET SPACE
Space station power short circuits, system repairs needed

Cygnus Starts Final Round of Processing for Station Cargo Delivery

US astronauts dodge ammonia on risky spacewalk

UK astronaut dreams of heavenly Christmas pudding

INTERNET SPACE
Recycled power plant equipment bolsters ULA in its energy efficiency

Purchase of building at Ellington a key step in Houston Spaceport development plans

More launches ahead for UH's Hawaii Space Flight Laboratory

LISA Pathfinder topped off for Vega launch that will test Relativity

INTERNET SPACE
Rocket Scientists to Launch Planet-Finding Telescope

5400mph winds discovered hurtling around planet outside solar system

New exoplanet in our neighborhood

Asteroid ripped apart to form star's glowing ring system

INTERNET SPACE
Computers tackle one of chemistry's greatest challenges

Conducting gels - from waste to wealth

Lockheed Martin introduces Digital Array Row Transceiver

Lasers could rapidly make materials hotter than the Sun









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.