Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Hybrid glasses could revolutionize gas storage
by Staff Writers
Cambridge, UK (SPX) Aug 31, 2015


File image.

A new method of manufacturing glass could lead to the production of 'designer glasses' with applications in advanced photonics, whilst also facilitating industrial scale carbon capture and storage. An international team of researchers, writing in the journal Nature Communications, report how they have managed to use a relatively new family of sponge-like porous materials to develop new hybrid glasses.

The work revolves around a family of compounds called metal-organic frameworks (MOFs), which are cage-like structures consisting of metal ions, linked by organic bonds. Their porous properties have led to proposed application in carbon capture, hydrogen storage and toxic gas separations, due to their ability to selectively adsorb and store pre-selected target molecules, much like a building a sieve which discriminates not only on size, but also chemical identity.

However, since their discovery a quarter of a century ago, their potential for large-scale industrial use has been limited due to difficulties in producing linings, thin films, fibrous or other 'shaped' structures from the powders produced by chemical synthesis. Such limitations arise from the relatively poor thermal and mechanical properties of MOFs compared to materials such as ceramics or metals, and have in the past resulted in structural collapse during post-processing techniques such as sintering or melt-casting.

Now, a team of researchers from Europe, China and Japan has discovered that careful MOF selection and heating under argon appears to raise their decomposition temperature just enough to allow melting, rather than the powders breaking down. The liquids formed have the potential to be shaped, cast and recrystallised, to enable solid structures with uses in gas separation and storage.

Dr Thomas Bennett from the Department of Materials Science and Metallurgy at the University of Cambridge says: "Traditional methods used in melt-casting of metals or sintering of ceramics cause the structural collapse of MOFs due to the structures thermally degrading at low temperatures. Through exploring the interface between melting, recrystallisation and thermal decomposition, we now should be able to manufacture a variety of shapes and structures that were previously impossible, making applications for MOFs more industrially relevant".

Equally importantly, say the researchers, the glasses that can be produced by cooling the liquids quickly are themselves a new category of materials. Further tailoring of the chemical functionalities may be possible by utilising the ease with which different elements can be incorporated into MOFs before melting and cooling.

Professor Yuanzheng Yue from Aalborg University adds: "A second facet to the work is in the glasses themselves, which appear distinct from existing categories. The formation of glasses that contain highly interchangeable metal and organic components, in is highly unusual, as they are normally either purely organic, for example in solar cell conducting polymers, or entirely inorganic, such as oxide or metallic glasses. Understanding the mechanism of hybrid glass formation will also greatly contribute to our knowledge of glass formers in general."

Using the advanced capabilities at the UK's synchrotron, Diamond Light Source, the team were able to scrutinise the metal organic frameworks in atomic detail. Professor Trevor Rayment, Physical Science Director at Diamond, comments: "This work is an exciting example of how work with synchrotron radiation which deepens our fundamental understanding of the properties of glasses also produces tantalising prospects of practical applications of new materials. This work could have a lasting impact on both frontiers of knowledge."

The researchers believe the new technique could open up the possibility of the production of 'chemically designed' glasses whereby different metals or organics are swapped into, or out of, the MOFs before melting.

Bennett, TD et al. Hybrid glasses from strong and fragile metal-organic framework liquids. Nature Communications; 28 August 2015


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cambridge
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Researcher develops cheaper, better LED technology
Tallahassee FL (SPX) Aug 31, 2015
A Florida State University engineering professor has developed a new highly efficient and low cost light emitting diode that could help spur more widespread adoption of the technology. "It can potentially revolutionize lighting technology," said Assistant Professor of Industrial and Manufacturing Engineering Zhibin Yu. "In general, the cost of LED lighting has been a big concern thus far. ... read more


ENERGY TECH
Russia Gets Ready for New Moon Landing

ASU chosen to lead lunar CubeSat mission

Russia's moon landing plan hindered by financial distress

Research May Solve Lunar Fire Fountain Mystery

ENERGY TECH
Opportunity brushes a rock and conducts in-situ studies

ASU instruments help scientists probe ancient Mars atmosphere

What Happened to Early Mars' Atmosphere

Destination Red Planet: Will Billionaires Fund a Private Mars Colony

ENERGY TECH
In Virginia, TechShop lets 'makers' tinker, innovate

New Russian Spaceship to Be Ready Ahead of Schedule

Annoying? US 'That Kissed the Moon' Has to Pay Russia for Space Flights

Chinese tourists unfazed by currency fall, market turmoil

ENERGY TECH
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

ENERGY TECH
Soyuz rocket with three astronauts launches towards ISS

First Dane in space begins long trip to repositioned ISS

Soyuz Heads to Space Station with New Crew

ISS Crew Redocks Soyuz Spacecraft

ENERGY TECH
SpaceX delays next launch after blast

Proton-M Brings Satellite Into Orbit for First Time Since May Accident

US Launches Atlas V Rocket With Navy Communications Satellite After Delay

FCube facility enters operations with fueling of Soyuz Fregat upper stage

ENERGY TECH
Distant planet's interior chemistry may differ from our own

Earth's mineralogy unique in the cosmos

A new model of gas giant planet formation

Planetary pebbles were building blocks for the largest planets

ENERGY TECH
GSAT-6A's big antenna deployed by ISRO

Record-high pressure reveals secrets of matter

Starshade identifies celestial objects at McMath-Pierce Solar Telescope

US Needs to Upgrade Old Radars to Detect Russian Missiles - Carter




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.