Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Bacteria can use magnetic particles to create a 'natural battery'
by Staff Writers
Paris, France (SPX) Mar 31, 2015


Bottle used in the experiment, with the pink colour due to the Fe(II)-oxidizer Rhodopseudomonas palustris and the magnetite clincing to the side of the bottle near to a magnet. Image courtesy James Byrne. For a larger version of this image please go here.

New research shows bacteria can use tiny magnetic particles to effectively create a 'natural battery.' According to work published in journal Science on 27 March, the bacteria can load electrons onto and discharge electrons from microscopic particles of magnetite.

This discovery holds out the potential of using this mechanism to help clean up environmental pollution, and other bioengineering applications. The European Association of Geochemistry is highlighting this work as especially interesting.

According to study leader Dr James Byrne (Tubingen): "The geochemistry is interesting in itself, but there are also potentially useful implications which may derive form this work. The flow of electrons is critical to the existence of all life and the fact that magnetite can be considered to be redox active opens up the possibility of bacteria being able to exist or survive in environments where other redox active compounds are in short supply in comparison to magnetite.

In our study we only looked at iron metabolizing bacteria, but we speculate that it might be possible for other non-iron metabolizing organisms to use magnetite as a battery as well - or if they can be made to use it, through genetic engineering. But this is something that we do not know yet"

Researchers from the University of Tubingen, the University of Manchester, and Pacific Northwest National Laboratory, USA, incubated the soil and water dwelling purple bacteria Rhodopseudomonas palustris with magnetite and controlled the amount of light the cultures were exposed to.

Using magnetic, chemical and mineralogical analytical methods, the team showed that in light conditions which replicated the day-time, phototrophic iron-oxidizing bacteria removed electrons from the magnetite, thereby discharging it. During the night-time conditions, the iron-reducing bacteria took over and were able to dump electrons back onto the magnetite and recharge it for the following cycle.

This oxidation/reduction mechanism was repeated over several cycles, meaning that the battery was used over repeated day-night cycles. Whilst this work has been on iron-metabolizing bacteria, it is thought that in the environment the potential for magnetite to act as a battery could extend to many other types of bacteria which do normally not require iron to grow, e.g. fermenters.

Co-author, Andreas Kappler (Tubingen), who is also secretary of the European Association of Geochemistry, said: "This may have some interesting geochemical applications. There has been considerable recent work on using magnetite to clean up toxic metals. For example, magnetite can reduce the toxic form of chromium, chromium VI, to the less toxic chromium (III), which can then be incorporated into a magnetite crystal. The fact that this magnetite may then be exposed to these reducing bacteria could potentially enhance its remediation capacity. But we are still at an early stage of understanding the bioengineering implications of this discovery".

.


Related Links
European Association of Geochemistry
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
New technology converts packing peanuts to battery components
West Lafayette IN (SPX) Mar 26, 2015
Researchers have shown how to convert waste packing peanuts into high-performance carbon electrodes for rechargeable lithium-ion batteries that outperform conventional graphite electrodes, representing an environmentally friendly approach to reuse the waste. Batteries have two electrodes, called an anode and a cathode. The anodes in most of today's lithium-ion batteries are made of graphit ... read more


ENERGY TECH
Soft Landing on the Moon an Extraordinary Challenge

Stop blaming the moon

Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

ENERGY TECH
Media Spun Up on NASA Cutting-edge Mars Landing Technology

Flash Reformatted and Marathon Completed

Curiosity Sniffs Out History of Martian Atmosphere

Curiosity Eyes Prominent Mineral Veins on Mars

ENERGY TECH
NASA Announces New Partnerships with Industry for Deep-Space Skills

A Year in Space

Russia to Consider Training First Guatemalan Cosmonaut

Russia, US to Jointly Prepare Mars, Moon Flight Road Map

ENERGY TECH
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

ENERGY TECH
Cosmonauts Take Tablet Computer Into Space

Russia announces plan to build new space station with NASA

Soyuz spacecraft docks at ISS for year-long mission

One-Year Crew Set for Launch to Space Station

ENERGY TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

Russia Launches Satan Missile With S Korean Kompsat 3A Satellite

ENERGY TECH
Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

ENERGY TECH
Australia eyes new air search radar

ISRO Says Multi-Object Tracking Radar Ready for Trials

Goddard releases open source core flight software suite to public

A first glimpse inside a macroscopic quantum state




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.