. 24/7 Space News .
SPACE MEDICINE
Sensor material could enable more sensitive readings of biological signals
by Staff Writers
London, UK (SPX) Oct 10, 2016


File image.

Scientists have created a material that could make reading biological signals, from heartbeats to brainwaves, much more sensitive. Organic electrochemical transistors (OECTs) are designed to measure signals created by electrical impulses in the body, such as heartbeats or brainwaves. However, they are currently only able to measure certain signals.

Now researchers led by a team from Imperial College London have created a material that measures signals in a different way to traditional OECTs that they believe could be used in complementary circuits, paving the way for new biological sensor technologies.

Semiconducting materials can conduct electronic signals, carried by either electrons or their positively charged counterparts, called holes. Holes in this sense are the absence of electrons - the spaces within atoms that can be filled by them.

Electrons can be passed between atoms but so can holes. Materials that use primarily hole-driven transport are called 'p-type' materials, and those that use primarily electron-driven transport are called, and 'n-type' materials.

An 'ambipolar' material is the combination of both types, allowing the transport of holes and electrons within the same material, leading to potentially more sensitive devices. However, it has not previously been possible to create ambipolar materials that work in the body.

The current most sensitive OECTs use a material where only holes are transported. Electron transport in these devices however has not been possible, since n-type materials readily break down in water-based environments like the human body.

But in research published in Nature Communications, the team have demonstrated the first ambipolar OECT that can conduct electrons as well as holes with high stability in water-based solutions.

The team overcame the seemingly inherent instability of n-type materials in water by designing new structures that prevent electrons from engaging in side-reactions, which would otherwise degrade the device.

These new devices can detect positively charged sodium and potassium ions, important for neuron activities in the body, particularly in the brain. In the future, the team hope to be able to create materials tuned to detect particular ions, allowing ion-specific signals to be detected.

Lead author Alexander Giovannitti, a PhD student under the supervision of Professor Iain McCulloch, from the Department of Chemistry and Centre for Plastic Electronics at Imperial said: "Proving that an n-type organic electrochemical transistor can operate in water paves the way for new sensor electronics with improved sensitivity.

"It will also allow new applications, particularly in the sensing of biologically important positive ions, which are not feasible with current devices. For example, these materials might be able to detect abnormalities in sodium and potassium ion concentrations in the brain, responsible for neuron diseases such as epilepsy."

Research paper


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Imperial College London
Space Medicine Technology and Systems






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE MEDICINE
Samsung's bio-drug unit to raise $2 bn in upcoming IPO
Seoul (AFP) Oct 5, 2016
Samsung's drug-manufacturing unit plans to raise as much as $2.0 billion in November with what looks set to be South Korea's third-largest initial public offering (IPO). Samsung Biologics, a contract manufacturer of biotech drugs for global pharmaceutical firms, had announced the IPO plan back in April - with parent Samsung Group seeking new growth engines as its key mobile phone business ... read more


SPACE MEDICINE
Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

SPACE MEDICINE
Yorkshire salt mine could help shed light on Martian life

NASA's Curiosity Rover Begins Next Mars Chapter

Pioneering Space Requires Living Off the Land in the Solar System

Unusual Martian region leaves clues to planet's past

SPACE MEDICINE
New Zealand government open-minded on space collaboration

Students team up with NASA for space coms and navigation

Software star Google expected to flex hardware muscle

Elon Musk an innovator wary of humanity's future

SPACE MEDICINE
Beijing exhibition means plenty of "space" for everyone

Space for Shenzhou 11

Waiting for Shenzhou 11

Tiangong-2 space lab enters preset orbit for docking with manned spacecraft

SPACE MEDICINE
Airbus DS and Neumann Space sign payload agreement for ISS

NASA, JAXA Focus on Maximizing Scientific Output From Space Station

Manned launch of Soyuz MS-02 maybe postponed to Nov 1

Russia cancels manned space launch over 'technical' issues

SPACE MEDICINE
ULA gets $860 million contract modification for expendable launch vehicle

Ariane 5 reaches the launch zone for Arianespace's October 4 liftoff

Rocket launch site to open up New Zealand space industry: Minister

NASA develops satellite concept to exploit rideshare opportunities

SPACE MEDICINE
The death of a planet nursery?

Protoplanetary Disk Around a Young Star Exhibits Spiral Structure

New Low-Mass Objects Could Help Refine Planetary Evolution

Pluto's heart sheds light on a possible buried ocean

SPACE MEDICINE
Study eyes radiation of everyday objects

French-Japanese laboratory to study materials under extreme conditions

Solving a cryptic puzzle with a little help from a hologram

Large volumes of data from ITER transferred to Japan at unprecedented speeds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.