. 24/7 Space News .
TIME AND SPACE
New physical effect demonstrated by University of Bath scientists after 40 year search
by Staff Writers
Bath UK (SPX) Feb 07, 2019

From right to left are: David C. Hooper, Ventsislav K. Valev, Joel T. Collins and Kristina R. Rusimova.

A new physical effect has been demonstrated at the University of Bath after 40 years of pursuit by physicists around the world, which could lead to advancements in chemical manufacturing efficiency, miniaturisation and quality control in personalised pharmaceuticals.

For the first time ever the research team in the Department of Physics was able to use a physical effect - specifically the colour-changing of light scattered from chiral molecules - to measure the chirality present, confirming predictions of theoretical work from the 1970s.

The technique is 100,000 times more sensitive than standard methods used today.

Chirality describes the orientation of molecules, which can exist in left or right 'handed' forms depending on how they twist in three dimensions. Many molecules essential to life, including DNA, amino acids and proteins, exhibit chirality and the handedness can totally change their function or properties. Therefore knowing the chirality of a substance is often critically important.

For decades scientists had sought to prove that you could accurately determine the chirality of molecules by measuring a colour-changing (nonlinear) effect upon illumination with twisted (circularly polarised) light. In theory, twisted light could change colour and then scatter differently from differently handed molecules - but this had never been demonstrated experimentally.

Dr Ventsislav Valev, who leads the research group in the Department of Physics at the University of Bath, said: "We've demonstrated a new physical effect - you don't get to say that every day. This is exactly why I got into science.

"We began thinking about the problem 13 years ago, together with Prof Thierry Verbiest, at KU Leuven, Belgium. Because the effect was so elusive, I knew half of the solution would be to develop a very sensitive experimental setup. This is what I did for many years. The other half was finding the right samples and I was really excited to discover the nanoscopic silver springs (nano-helices) fabricated by Prof Peer Fischer's group, at the Max Planck Institute for Intelligent Systems, in Stuttgart, Germany."

PhD student Joel Collins had an incredible moment when running a series of tests on these springs.

He said: "To be honest my attitude was almost 'OK let's get this out the way to make sure it doesn't work and we can move onto something else'. Then, together with my colleague Dr Kristina Rusimova, we noticed that there did actually seem to be an effect, and I thought 'Hmmmm, that's interesting.'

"We kept repeating the experiment to make sure it was actually a real effect and we saw that not only it's there but it's huge - we were only using really low concentrations of our nano-helices.

"For my part, I didn't really recognise how important it is, and was expecting someone to come along and rip it to shreds, to say - 'you haven't thought of that' or 'you've missed this'. But over time it has dawned on me - that this is actually a fantastic result."

The experimental geometry is in fact quite simple; the nano-springs are dispersed in water within a glass container where they spread randomly. Then a laser is aimed at them. The twist (circular polarisation) of the laser is switched periodically and light scattered from the container at 90 degrees is analysed to determine the chirality of the springs present. The research is published in Physical Review X.

Dr Valev added: "It's taken 40 years, people have been looking for this without success, and not for lack of trying. It's amazing. The theory was quite controversial, people thought that maybe the effect was impossible to observe, maybe something else was there, blocking it.

"For 200 years, scientists have been using the same method to measure chirality. It's not very sensitive, but it's robust and simple, however precise measurements of chirality have become a major hurdle for human-made chiral nanotechnology because of false positives.

"Now we have a method 100,000 times more sensitive, free from false positives. There's a new kind of manufacturing process currently emerging. It is called 'lab-on-a-chip' and our effect fits very well with it.

"A more sensitive test means you can use lower quantities in quality control and reduce waste, there are applications in chemical and pharmaceutical manufacturing, as well as in microfluidics, in miniaturisation and for developing personal pharmaceutical technologies."

Advanced laser sources, sensitive detection equipment and state-of-the-art nanofabrication techniques have all come together to enable the experimental observation of the new effect.

Professor David Andrews, from the University of East Anglia, theorised the effect 40 years ago. He said: "Dr Valev's pioneering work is a clever and highly significant achievement, for he has realised a kind of application that could never have been imagined when the theory was first laid, forty years ago.

"His results serve as an encouragement to all pure theorists!"

Next, the researchers will be using their findings to characterise chiral molecules and to develop its technological applications.

Research Report: "First observation of optical activity in hyper-Rayleigh scattering"


Related Links
University of Bath
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Superinsulators to become scientists' quark playgrounds
Lemont IL (SPX) Feb 01, 2019
Scientists widely accept the existence of quarks, the fundamental particles that make up protons and neutrons. But information about them is still elusive, since their interaction is so strong that their direct detection is impossible and exploring their properties indirectly often requires extremely expensive particle colliders and collaborations between thousands of researchers. So, quarks remain conceptually foreign and strange like the Cheshire cat in "Alice's Adventures in Wonderland," whose grin i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Richard Branson says he'll fly to space by July

Chao Presents Astronaut Wings to Virgin Galactic's SpaceShipTwo Crew

Russia to fly US Astronauts to ISS ahead of schedule

To divinity and beyond: questions over Ukraine space church's future

TIME AND SPACE
Launch of Unmanned US Dragon 2 Spacecraft to ISS Set for March 2

SpaceX no-load test delayed

New photos show russia's first hypersonic space drone

Arianespace orbits two telecommunications satellites on first Ariane 5 launch of 2019

TIME AND SPACE
Beyond Mars, the Mini MarCO Spacecraft Fall Silent

InSight's Seismometer Now Has a Cozy Shelter on Mars

What Can Curiosity Tell Us About How a Martian Mountain Formed

Research Uses Curiosity Rover to Measure Gravity on Mars

TIME AND SPACE
Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

TIME AND SPACE
Recreating space on Earth - two facilities join ESA's platforms for spaceflight research

Iridium Declares Victory; $3 Billion Satellite Constellation Upgrade Complete

Aerospace Workforce Training - A National Mandate for 2019 and Beyond

3400 new UK space jobs created

TIME AND SPACE
Momentus Announces Orders are Open for the Vigoride Orbit Transfer Service

Green alternative to PET could be even greener

Will moving to the commercial cloud leave some data users behind?

3D printed tires and shoes that self-repair

TIME AND SPACE
Massive collision in the planetary system Kepler 107

ASU scientists study organization of life on a planetary scale

Magnifying glass reveals unexpected intermediate mass exoplanets

Where Is Earth's Submoon?

TIME AND SPACE
Sodium, Not Heat, Reveals Volcanic Activity on Jupiter's Moon Io

New Horizons' Newest and Best-Yet View of Ultima Thule

Missing link in planet evolution found

Juno's Latest Flyby of Jupiter Captures Two Massive Storms









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.