. 24/7 Space News .
TECH SPACE
New metamaterials can change properties with a flick of a light-switch
by Staff Writers
Washington DC (SPX) Aug 04, 2016


This is a cross-sectional scanning electron microscopy images of a 750 nm period grating fabricated by focused ion beam milling in a 300 nm thick amorphous germanium antimony telluride film on silica. Image courtesy Karvounis/Gholipour/MacDonald/Zheludev, Optoelectronics Research Centre, University of Southampton. For a larger version of this image please go here.

Invisibility cloaks have less to do with magic than with metamaterials. These human-engineered materials have properties that don't occur in nature, allowing them to bend and manipulate light in weird ways.

For example, some of these materials can channel light around an object so that it appears invisible at a certain wavelength. These materials are also useful in applications such as smaller, faster, and more energy efficient optics, sensors, light sources, light detectors and telecommunications devices.

Now researchers have designed a new kind of metamaterial whose properties can be changed with a flick of a switch. In their proof-of-principle experiment, the researchers used germanium antimony telluride (GST) - the kind of phase-change material found in CDs and DVDs - to make an improved switchable metasurface that can block or transmit particular wavelengths of light at the command of light pulses.

The researchers describe the metamaterial this week in Applied Physics Letters, from AIP Publishing, and how its ability to switch properties can be used in a range of sophisticated optical devices.

"Technologies based upon the control and manipulation of light are all around us and of fundamental importance to modern society," said Kevin MacDonald, a researcher at the University of Southampton in the U.K.

"Metamaterials are part of the process of finding new ways to use light and do new things with it - they are an enabling technology platform for 21st century optics."

By dynamically controlling the optical properties of materials, you can modulate, select, or switch characteristics of light beams, such as intensity, phase, color and direction - an ability that's essential to many existing and potential devices, he said.

Switchable metamaterials in general aren't new. MacDonald and many others have made such materials before by combining metallic metamaterials with so-called active media such as GST, which can respond to external stimuli like heat, light or an electric field. In these hybrid materials, the metal component is structurally engineered at the nanometer scale to provide the desired optical properties. Incorporating the active medium provides a way to tune or switch those properties.

The problem is that metals tend to absorb light at visible and infrared wavelengths, making them unsuitable for many optical device applications. Melting points are also suppressed in nanostructured metals, making the metamaterials susceptible to damage from laser beams. In addition, a typical metal is gold, which isn't compatible with the CMOS technology that's ubiquitous in making today's integrated devices.

In the new work, MacDonald and his colleagues at Southampton's Optoelectronics Research Centre and Centre for Photonic Metamaterials have made a switchable metamaterial that doesn't use metal at all. "What we've done now is structure the phase-change material itself," MacDonald said. "We have created what is known as an all-dielectric metamaterial, with the added benefit of GST's nonvolatile phase-switching behavior."

Pulses of laser light can change the structure of GST between a random, amorphous one and a crystalline one. For GST, this behavior is nonvolatile, which means it will stay in a particular state until another pulse switches it back. In rewritable CDs and DVDs, this binary laser-driven switching is the basis for data storage.

The researchers created metamaterial grating patterns in an amorphous GST film only 300 nm thick, with lines 750 to 950 nanometers apart. This line spacing allows the surfaces to selectively block the transmission of light at near-infrared wavelengths (between 1300 and 1600 nm). But when a green laser converts the surfaces into a crystalline state, they become transparent at these wavelengths.

The research team is now working to make metamaterials that can switch back and forth over many cycles. They're also planning increasingly complex structures to deliver more sophisticated optical functions. For example, this approach could be used to make switchable ultra-thin metasurface lenses and other flat, optical components.

Research paper: "All-dielectric phase-change reconfigurable metasurface,"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Unlocking the secrets of creeping concrete
Washington DC (SPX) Aug 04, 2016
College students have used it to make cheap furniture, China has had shortages of it, and main character Michael Scott of "The Office" once famously buried his face in it. Concrete is everywhere - a ubiquity owed to its strength as a building material. Despite its strength, however, it has a pernicious but inescapable tendency to "creep," or deform progressively under mechanical stress, which le ... read more


TECH SPACE
Heart hazard for Apollo astronauts: study

Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized

Russian and US engineers plan manned moon mission

SSTL and Goonhilly announce partnership and a call for lunar orbit payloads

TECH SPACE
Digging deeper into Mars

Engine burn gives Mars mission a kick

NASA's Viking Data Lives on, Inspires 40 Years Later

Opportunity Rover wrapping up work within Marathon Valley

TECH SPACE
Tile Bonding Begins for Orion's First Mission Atop Space Launch System Rocket

Russia, US Discuss Lunar Station for Mars Mission

Disney theme park in Shanghai nears a million visitors

NASA Sails Full-Speed Ahead in Solar System Exploration

TECH SPACE
China to expand int'l astronauts exchange

China's Agreement with United Nations to Help Developing Countries Get Access to Space

Chinese tracking ship Yuanwang-7 starts maiden voyage

Chinese mega-telescope obtains data on 7 million stars

TECH SPACE
Dream Chaser Spacecraft on Track to Supply Cargo to ISS

Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

Russian New Soyuz-MS Spacecraft Docks With ISS for First Time

TECH SPACE
The rise of commercial spaceports

India earned Rs 230 crore through satellite launch services in FY16

US Plan to Diversify Expendable Space Launch Vehicles Being Questioned

Intelsat 33e arrives at the Spaceport for Arianespace's August launch with Ariane 5

TECH SPACE
Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

NASA's Next Planet Hunter Will Look Closer to Home

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

TECH SPACE
Lattice structure absorbs vibrations

Study looks at future of 2D materials

Self-organizing smart materials that mimic swarm behavior

Flexible building blocks of the future









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.