Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
New magnetic behavior in nanoparticles could lead to even smaller digital memories
by Staff Writers
Barcelona, Spain (SPX) Dec 23, 2013


This is a schematic representation of the antiferromagnetic coupling between a magnetic Fe3O4 soft core and a magnetic Mn3O4 hard shell. The image of an electronic high-resolution transmission microscope, superimposed on a map of electronic energy loss spectroscopy, reveals the high quality of the interface with a coherent increase between the two phases. Credit: UAB.

Electronic devices such as mobile phones and tablets spur on a scientific race to find smaller and smaller information processing and storage elements. One of the challenges in this race is to reproduce certain magnetic effects at nanometre scale.

An international collaboration of scientists led by researchers from the Universitat Autonoma de Barcelona Department of Physics and the Institut Catala de Nanociencia i Nanotecnologia, and with the participation of the Universitat de Barcelona, has been able to reproduce in particles measuring 10 to 20 nanometres a magnetic phenomenon of great importance in magnetic devices: the antiferromagnetic coupling between layers.

This phenomenon appears when coupling layers of materials with different magnetic properties, which allows controlling the magnetic behaviour of the whole device. This property has very important technological applications. For example, it forms an important part of data reading systems found in hard drives and in the MRAM memories of computers and mobile devices.

Researchers have managed for the first time to reproduce this phenomenon in nanoscopic materials, measuring a mere few tens of atoms in diameter. They managed to do this by using iron-oxide particles surrounded by a thin layer of manganese-oxide and vice versa: manganese-oxide particles covered by a layer of iron-oxide.

The discovery provides an unprecedented control of the magnetic behaviour of nanoparticles, since it permits controlling and easily adjusting their properties without having to manipulate their shape or composition, solely by controlling the temperature and the magnetic fields surrounding it.

"We've been able to reproduce a magnetic behaviour not previously observed in nanoparticles, and this paves the way for miniaturisation up to limits which seemed impossible for magnetic storage and other more sophisticated applications such as spin filters, magnetic codifiers and multi-level recording", explain Josep Nogues, ICREA research professor, and Maria Dolors Baro, professor of Applied Physics.

The research, published today in Nature Communications, included the participation of professors Maria Dolors Baro and Santiago Surinach from the Department of Physics of the UAB; ICREA research professor Josep Nogues, from the Department of Physics of the UAB and ICN2; researchers from the Department of Inorganic Chemistry and from the Department of Electronics at the University of Barcelona (UB); researchers from the Complutense University of Madrid; the Universita degli Studi di Firenze, Italy; the St. Petersburg Nuclear Physics Institute, Russia; the Stockholm University, Sweden; the NCSR in Greece; the Oak Ridge National Laboratory, USA; the Miami University, Ohio, USA; and the Argonne National Laboratory, USA.

.


Related Links
Universitat Autonoma de Barcelona
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Microprinting leads to low-cost artificial cells
Philadelphia PA (SPX) Dec 22, 2013
Easily manufactured, low-cost artificial cells manufactured using microprinting may one day serve as drug and gene delivery devices and in biomaterials, biotechnology and biosensing applications, according to a team of Penn State biomedical engineers. These artificial cells will also allow researchers to explore actions that take place at the cell membrane. "In a natural cell, so much is g ... read more


NANO TECH
NASA Releases New Earthrise Simulation Video

Most Chang'e-3 science tools activated

China's Lunar Lander May Provide Additional Science for NASA Spacecraft

China plans to launch Chang'e-5 in 2017

NANO TECH
Curiosity Team Upgrades Software, Checks Wheel Wear

Opportunity Communications Remain Slow Due To Odyssey Issues

New Views of Mars from Sediment Mineralogy

NASA poised to launch Mars atmosphere probe

NANO TECH
Sierra Nevada Completes CCDev2, Begins Dream Chaser Flight Test Program

Russia's Putin pledges $1.5 billion for basic science research

Asia's year in space triggers applause but also worry

NASA's network for talking to space missions nears 50th anniversary

NANO TECH
China's moon rover continues lunar survey after photographing lander

China's Yutu "naps", awakens and explores

Deep space monitoring station abroad imperative

Chinese sci-fi writers laud moon landing

NANO TECH
Astronauts remove faulty ammonia pump during first spacewalk after ISS coolant system goes wrong

No early Christmas? Spacesuit issue delays second spacewalk to fix ISS cooling system

Spacesuit flaw postpones station repairs to Dec 24

NASA and Russia prolong contract on Soyuz taxi flights to ISS

NANO TECH
Orbital Launches Completes 40th Consecutive Successful Suborbital Rocket For NASA

Argentina successfully launches research rocket

Gaia secured inside fairing

India to decide December 27 on GSAT-14 launch date

NANO TECH
Gaia Mission Could Help Map Exoplanets

First detection of a predicted unseen exoplanet

Astronomers solve temperature mystery of planetary atmospheres

Nearby failed stars may harbor planet

NANO TECH
Europe's Gaia telescope detaches from Fregat-MT upper stage

Sailing satellites into safe retirement

Researchers Design First Battery-Powered Invisibility Cloaking Device

'Macrocells' influence corrosion rate of submerged marine concrete structures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement