. 24/7 Space News .
NANO TECH
Inspiration for fluorescent nanomaterials was taken from plant antenna
by Staff Writers
Bizkaia, Spain (SPX) Jan 28, 2016


From left to right, the researchers Jorge Banuelos and Inigo Lopez Arbeloa, and Leire Gartzia. Image courtesy MTZ Mikel Trespuentes.

These new multifunctional materials aim to imitate the photosynthetic organisms of plants. These microorganisms consist of thousands of chlorophyll molecules embedded in a protein matrix, which provides them with a specific orientation/arrangement and intermolecular distance.

One of the main characteristics of these systems is their antenna function, which enables them to harvest solar energy in a broad spectral range and transport it by means of multiple, efficient energy transfer processes to a specific reaction centre, where it is finally turned into chemical energy.

It is a well-known fact that solar radiation is made up of many colours (blue, green, yellow, red, etc.), as borne out by the broad range of colours present in the rainbow. The aim of artificial antenna systems is to capture the greatest light range possible so that it can then be efficiently turned into electrical energy (activating of photovoltaic cells)or the emitting of red light, so useful in photonic applications, such as those of biomedical interest.

In this respect, and with the aim of coming up with artificial antenna systems, the Molecular Spectroscopy Group has been developing new dyes and photoactive nanomaterials capable of absorbing a broad interval of chromatic radiation which can then be transformed into a red-only emission.

Energy donor and acceptor molecules coexist in these photoactive dyes and nanomaterials developed by the Molecular Spectroscopy Group. The former are highly photostable fluorescent molecules and are responsible for absorbing the light which they then transfer to the acceptor species, which will emit light.

This strategy allows the limitations inherent in the red dyes to be reduced; these red dyes are characterised by their reduced light absorption and their low photostability and offer a great advantage in photonic and biophotonic applications as they allow the photostability of the system and detection sensitivity to be improved.

Three different alternatives have been chosen to develop these antenna systems: two of them are based on the encapsulation of fluorescent dyes in either inorganic or organic hosts, and the other one in the assembly of different dyes into a single molecular structure.

"We have replaced the protein matrix of the natural systems by synthetic hosts of nanometric dimensions which protect the dyes and provide a significant arrangement that will help to make the energy transfer processes viable and efficient.

"Furthermore, with respect to the photoactive part, which is responsible for interacting with the light, the chlorophyll molecules have been replaced by fluorescent molecules many of which have been tuned a la carte," explained Leire Gartzia, author of the thesis the most salient results of which have been included in the paper published in International Reviews in Physical Chemistry.

In the first of the alternatives, the solid matrix chosen to encapsulate the fluorescent dyes is of crystalline aluminosilicate known as Zeolite L., characterised by the fact that it has unidimensional channels and a suitable pore size (7A) in which the molecules fit like a glove.

"This produces a highly ordered nanomaterial that allows the light emission to be modulated to produce a red or white light depending on the control we exert on the efficiency of the energy transfer process," added the researcher.

This chameleon-like property turns them into materials capable of generating new light emitting diodes (LEDs), featuring white-light emitting diodes (WLED), which are so useful in lighting technologies such as liquid crystal displays (LCD).

The other matrix chosen to host dyes consists of polymer nanoparticles capable of hosting inside them extremely high dye concentrations without it becoming aggregated. "Confining the dyes reduces the photodegradation processes, considerably increases their useful service life and encourages the transfer of energy, which has enabled us not only to obtain an antenna system but also tunable red laser radiation that is efficient and long-lasting in stable aqueous suspensions," pointed out Leire Gartzia.

Finally, they have developed antenna systems made up solely of organic molecules in which the energy donor and acceptor species are linked by a spacer ensuring short intermolecular distances, thus achieving efficiencies in the energy transfer processes of practically 100%.

This has meant a great improvement in the harvesting of light across the visible spectrum, leading to exclusively stable bright red which means they are highly recommended as active hosts for tunable lasers in the zone close to the infrared. The main interest in this wavelength is its great tissue penetration capacity, a key in photodynamic therapy with uses in ophthalmology and dermatology and in cancer treatment, for example.

Bibliographical reference: L. Gartzia-Rivero, J. Banuelos and I. Lopez-Arbeloa. Excitation energy transfer in artificial antennas: from photoactive materials to molecular assemblies. International Reviews in Physical Chemistry. Vol 34, No. 4, 515-556, 2015.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of the Basque Country
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Microwaved nanotubes come up clean
Houston TX (SPX) Jan 26, 2016
Amid all the fancy equipment found in a typical nanomaterials lab, one of the most useful may turn out to be the humble microwave oven. A standard kitchen microwave proved effective as part of a two-step process invented at Rice and Swansea universities to clean carbon nanotubes. Basic nanotubes are good for many things, like forming into microelectronic components or electrically conducti ... read more


NANO TECH
Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

NANO TECH
Rover uses Rock Abrasion Tool to grind rocks

Thales Alenia Space to supply reaction control subsystem for ExoMars

Money troubles may delay Europe-Russia Mars mission

Opportunity Welcomes Winter Solstice

NANO TECH
Arab nations eye China, domestic market to revive tourism

2016 Goals Vital to Commercial Crew Success

Russian Space Agency discussing possible training of Iranian astronaut

Zinnias from space

NANO TECH
China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

NANO TECH
Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

Water in US astronaut's helmet cuts short Briton's 1st spacewalk

Roscosmos prepares to launch first manned Soyuz MS

NANO TECH
Ariane 5 is readied for an Arianespace leading customer Intelsat

EpicNG satellite installed on Ariane 5 for launch

Building a robust commercial market in low earth orbit

NASA awards ISS cargo transport contracts

NANO TECH
Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

NANO TECH
Material may offer cheaper alternative to smart windows

Weaving a new story for COFS and MOFs

Microsoft donates cloud computing 'worth $1 bn'

New insights into the supercritical state of water









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.