Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
New electron spin secrets revealed
by Staff Writers
Trondheim, Norway (SPX) Nov 11, 2014


File image.

Researchers from the Norwegian University of Science and Technology (NTNU) and the University of Cambridge in the UK have demonstrated that it is possible to directly generate an electric current in a magnetic material by rotating its magnetization.

The findings reveal a novel link between magnetism and electricity, and may have applications in electronics.

The electric current generation demonstrated by the researchers is called charge pumping. Charge pumping provides a source of very high frequency alternating electric currents, and its magnitude and external magnetic field dependency can be used to detect magnetic information.

The findings may, therefore, offer new and exciting ways of transferring and manipulating data in electronic devices based on spintronics, a technology that uses electron spin as the foundation for information storage and manipulation.

The research findings are published as an Advance Online Publication (AOP) on Nature Nanotechnology's website on 10 November 2014.

Spintronics has already been exploited in magnetic mass data storage since the discovery of the giant magnetoresistance (GMR) effect in 1988. For their contribution to physics, the discoverers of GMR were awarded the Nobel Prize in 2007.

The basis of spintronics is the storage of information in the magnetic configuration of ferromagnets and the read-out via spin-dependent transport mechanisms.

"Much of the progress in spintronics has resulted from exploiting the coupling between the electron spin and its orbital motion, but our understanding of these interactions is still immature. We need to know more so that we can fully explore and exploit these forces," says Arne Brataas, professor at NTNU and the corresponding author for the paper.

An electron has a spin, a seemingly internal rotation, in addition to an electric charge. The spin can be up or down, representing clockwise and counterclockwise rotations.

Pure spin currents are charge currents in opposite directions for the two spin components in the material.

It has been known for some time that rotating the magnetization in a magnetic material can generate pure spin currents in adjacent conductors.

However, pure spin currents cannot be conventionally detected by a voltmeter because of the cancellation of the associated charge flow in the same direction.

A secondary spin-charge conversion element is then necessary, such as another ferromagnet or a strong spin-orbit interaction, which causes a spin Hall effect.

Brataas and his collaborators have demonstrated that in a small class of ferromagnetic materials, the spin-charge conversion occurs in the materials themselves.

The spin currents created in the materials are thus directly converted to charge currents via the spin-orbit interaction.

In other words, the ferromagnets function intrinsically as generators of alternating currents driven by the rotating magnetization.

"The phenomenon is a result of a direct link between electricity and magnetism. It allows for the possibility of new nano-scale detection techniques of magnetic information and for the generation of very high-frequency alternating currents," Brataas says.

The generation and modulation of high-frequency currents are central wireless communication devices such as mobile phones, WLAN modules for personal computers, Bluetooth devices and future vehicle radars.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Norwegian University of Science and Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Noise in a microwave amplifier is limited by quantum particles of heat
Gothenburg, Sweden (SPX) Nov 11, 2014
As part of an international collaboration, scientists at Chalmers University of Technology have demonstrated how noise in a microwave amplifier is limited by self-heating at very low temperatures. The results will be published in the prestigious journal Nature Materials. The findings can be of importance for future discoveries in many areas of science such as quantum computers and radio as ... read more


TIME AND SPACE
After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

China gears up for lunar mission after round-trip success

NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

TIME AND SPACE
UI instrument sees comet-created atmosphere on Mars

Mars Orbiter MAVEN Demonstrates Relay Prowess

China Exclusive: China developing Mars rover

Opportunity Dust Levels Back to Normal

TIME AND SPACE
Weather delays Orion's move to launch pad, rescheduled for Tuesday

Alexander's rollercoaster ride from space to Germany

Virgin Galactic could resume test flights in six months

NASA Rocket Experiment Finds the Universe Brighter Than We Thought

TIME AND SPACE
China publishes Earth, Moon photos taken by lunar orbiter

Mars probe to debut at upcoming air show

China plans to launch about 120 applied satellites

China to build global quantum communication network in 2030

TIME AND SPACE
Astronaut turned Twitter star, Reid Wiseman, back on Earth

Three-man multinational space crew returns to Earth

International Space Station astronauts put GoPro camera in a floating ball of water

ISS Agency Heads Issue Joint Statement

TIME AND SPACE
Orbital recommits to NASA Commercial program and Antares

SpaceX chief Musk confirms Internet satellite plan

Japanese Satellites Orbited as Part of Russia-Ukraine Program

Experimental flight of GSLV Mark 3 in December

TIME AND SPACE
European satellite could discover thousands of planets in Earth's galaxy

NASA's Hubble Surveys Debris-Strewn Exoplanetary Construction Yards

Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

TIME AND SPACE
ORNL thermomagnetic processing method provides path to new materials

ORNL materials researchers get first look at atom-thin boundaries

Lockheed Martin partners for space debris research

Shaking the topological cocktail of success




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.