. 24/7 Space News .
STELLAR CHEMISTRY
New detector at South Pole shows early success at neutrino hunting
by Staff Writers
Lawrence KS (SPX) Jul 26, 2016


David Besson during his the last big deployment at the South Pole, which required hole drilling using a hot-water drill. Image courtesy David Besson | KU News Service. For a larger version of this image please go here.

In the second it takes to read these words, 65 billion neutrinos will shoot through every square centimeter of your body. Luckily, these infinitesimal particles don't do any harm - they pass through us, as they do with most everything, without stopping or interacting.

"Partly because it's so tiny, a neutrino has this unique property - it's able to penetrate through matter very easily," said David Besson, professor of physics and astronomy at the University of Kansas. "A neutrino produced in the center of the Sun can typically require a light year's worth of solid lead to stop that neutrino, whereas light, in the form of photons from the Sun, you can block out easily with dark sunglasses."

According to Besson, the ability of neutrinos to pierce through anything and keep on moving makes them ideal cosmic messengers.

"The fact that neutrinos are so penetrating makes them interesting to astrophysicists," he said. "Huge and cataclysmic stellar explosions that we'd like to understand produce lots of particles, but most of them will be absorbed by material in the interstellar medium before getting to our observatories. But neutrinos, because they're so penetrating, can carry info from much farther away - much more than a photon, for example."

Yet, neutrinos are tricky to detect precisely because they don't interact with matter.

Today, Besson is part of a multinational research effort at the South Pole to build and operate the Askaryan Radio Array, a large-scale radio-detection instrument that will identify radio waves cast off from high-energy neutrinos far underneath the Antarctic ice shelf. Eventually the array will be composed of 37 antennae stations that effectively will transform hundreds of cubic kilometers into a colossal neutrino detector.

The ARA team recently published a performance review of the first two stations to come online in the peer-reviewed publication Physical Review D. Their findings showed great potential for the detector to push forward understanding of the cosmos once it's fully operational.

"The first two stations are showing a lot of promise of detecting neutrinos," Besson said. "Radio transparency within the ice is very high. We measured at this at the South Pole and were able to send radio waves through about 4 miles' worth of ice. So that's pretty transparent, and it means you can bury an antenna in the Antarctic ice and scan for several kilometers around for potential neutrino interactions."

Besson performs data analysis and serves as a spokesman for the ARA group. He said once the array is fully operational, it could produce information from neutrinos that would shed light on the state of the current universe and also the universe's origins.

"Neutrinos tell us something about cataclysmic explosions that happen today or within the recent history of the universe," he said. "But also, because they can reach us from very farthest periphery of the distant universe, they carry an imprint of processes that occurred in early universe. If you can accumulate enough data from them, you can test theories of evolution of the cosmos."

While scientists are learning secrets of the universe, KU undergraduate and graduate students will have the opportunity to learn about neutrinos and neutrino detection via the array. Moreover, two of the graduate students will travel to Antarctica to engage in research this October. Their route will take them from Lawrence to Kansas City, Los Angeles, New Zealand, McMurdo Station in Antarctica, and finally to the South Pole aboard a C-130 military jet.

"There's a particle astrophysics group here at KU - they work on radio-wave detection of cosmic rays," Besson said. That group includes four graduate students and three undergraduates.

Further, Besson is working with high school students at KU this summer, including soon-to-be Jayhawks.

"Two of them are coming here as undergrads in the fall," he said. "The nice thing about radio waves, unlike gamma rays or x-rays, is they're familiar to people, and the equipment you need to send and receive radio waves are just antennas, and it doesn't take much work to get to point where you can design and build and test your own antennae."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Kansas
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Fermi telescope helps link cosmic neutrino to blazar blast
Greenbelt MD (SPX) May 04, 2016
Nearly 10 billion years ago, the black hole at the center of a galaxy known as PKS B1424-418 produced a powerful outburst. Light from this blast began arriving at Earth in 2012. Now astronomers using data from NASA's Fermi Gamma-ray Space Telescope and other space- and ground-based observatories have shown that a record-breaking neutrino seen around the same time likely was born in the same even ... read more


STELLAR CHEMISTRY
Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized

Russian and US engineers plan manned moon mission

SSTL and Goonhilly announce partnership and a call for lunar orbit payloads

Taiwan to make lunar lander for NASA moon-mining mission

STELLAR CHEMISTRY
NASA's Viking Data Lives on, Inspires 40 Years Later

Opportunity Rover wrapping up work within Marathon Valley

NASA Mars Rover Can Choose Laser Targets on Its Own

NASA Selects Five Mars Orbiter Concept Studies

STELLAR CHEMISTRY
Russia, US Discuss Lunar Station for Mars Mission

Disney theme park in Shanghai nears a million visitors

NASA Sails Full-Speed Ahead in Solar System Exploration

Sensor Technology Could Revolutionize What You Sleep On

STELLAR CHEMISTRY
China commissions space tracking ship as new station readied

China's second space lab Tiangong-2 reaches launch center

Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

STELLAR CHEMISTRY
Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

Russian New Soyuz-MS Spacecraft Docks With ISS for First Time

NASA Highlights Space Station Research Benefits, Opportunities at San Diego Conference

STELLAR CHEMISTRY
US Plan to Diversify Expendable Space Launch Vehicles Being Questioned

Intelsat 33e arrives at the Spaceport for Arianespace's August launch with Ariane 5

SpaceX cargo ship arrives at space station

Ukraine, US aim to launch jointly-developed space rocket

STELLAR CHEMISTRY
Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

Surface Composition Determines Planet's Temperature and Habitability

STELLAR CHEMISTRY
NASA Establishes Institute to Explore New Ways to Protect Astronauts

NASA to Begin Testing Next Generation of Spacecraft Heat Exchangers

Passive Attitude Control For Small Satellites

Active tracking of astronaut rad-exposures targeted









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.