. 24/7 Space News .
ENERGY TECH
New class of materials could be used to make batteries that charge faster
by Staff Writers
Cambridge UK (SPX) Jul 30, 2018

file illustration only

Researchers have identified a group of materials that could be used to make even higher power batteries. The researchers, from the University of Cambridge, used materials with a complex crystalline structure and found that lithium ions move through them at rates that far exceed those of typical electrode materials, which equates to a much faster-charging battery.

Although these materials, known as niobium tungsten oxides, do not result in higher energy densities when used under typical cycling rates, they come into their own for fast charging applications.

Additionally, their physical structure and chemical behaviour give researchers a valuable insight into how a safe, super-fast charging battery could be constructed, and suggest that the solution to next-generation batteries may come from unconventional materials. The results are reported in the journal Nature.

Many of the technologies we use every day have been getting smaller, faster and cheaper each year - with the notable exception of batteries. Apart from the possibility of a smartphone which could be fully charged in minutes, the challenges associated with making a better battery are holding back the widespread adoption of two major clean technologies: electric cars and grid-scale storage for solar power.

"We're always looking for materials with high-rate battery performance, which would result in a much faster charge and could also deliver high power output," said Dr Kent Griffith, a postdoctoral researcher in Cambridge's Department of Chemistry and the paper's first author.

In their simplest form, batteries are made of three components: a positive electrode, a negative electrode and an electrolyte. When a battery is charging, lithium ions are extracted from the positive electrode and move through the crystal structure and electrolyte to the negative electrode, where they are stored. The faster this process occurs, the faster the battery can be charged.

In the search for new electrode materials, researchers normally try to make the particles smaller. "The idea is that if you make the distance the lithium ions have to travel shorter, it should give you higher rate performance," said Griffith.

"But it's difficult to make a practical battery with nanoparticles: you get a lot more unwanted chemical reactions with the electrolyte, so the battery doesn't last as long, plus it's expensive to make."

"Nanoparticles can be tricky to make, which is why we're searching for materials that inherently have the properties we're looking for even when they are used as comparatively large micron-sized particles. This means that you don't have to go through a complicated process to make them, which keeps costs low," said Professor Clare Grey, also from the Department of Chemistry and the paper's senior author.

"Nanoparticles are also challenging to work with on a practical level, as they tend to be quite 'fluffy', so it's difficult to pack them tightly together, which is key for a battery's volumetric energy density."

The niobium tungsten oxides used in the current work have a rigid, open structure that does not trap the inserted lithium, and have larger particle sizes than many other electrode materials. Griffith speculates that the reason these materials have not received attention previously is related to their complex atomic arrangements.

However, he suggests that the structural complexity and mixed-metal composition are the very reasons the materials exhibit unique transport properties.

"Many battery materials are based on the same two or three crystal structures, but these niobium tungsten oxides are fundamentally different," said Griffith. The oxides are held open by 'pillars' of oxygen, which enables lithium ions to move through them in three dimensions. "The oxygen pillars, or shear planes, make these materials more rigid than other battery compounds, so that, plus their open structures means that more lithium ions can move through them, and far more quickly."

Using a technique called pulsed field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy, which is not readily applied to battery electrode materials, the researchers measured the movement of lithium ions through the oxides, and found that they moved at rates several orders of magnitude higher than typical electrode materials.

Most negative electrodes in current lithium-ion batteries are made of graphite, which has a high energy density, but when charged at high rates, tends to form spindly lithium metal fibres known as dendrites, which can create a short-circuit and cause the batteries to catch fire and possibly explode.

"In high-rate applications, safety is a bigger concern than under any other operating circumstances," said Grey. "These materials, and potentially others like them, would definitely be worth looking at for fast-charging applications where you need a safer alternative to graphite."

In addition to their high lithium transport rates, the niobium tungsten oxides are also simple to make. "A lot of the nanoparticle structures take multiple steps to synthesise, and you only end up with a tiny amount of material, so scalability is a real issue," said Griffith. "But these oxides are so easy to make, and don't require additional chemicals or solvents."

Although the oxides have excellent lithium transport rates, they do lead to a lower cell voltage than some electrode materials. However, the operating voltage is beneficial for safety and the high lithium transport rates mean that when cycling fast, the practical (usable) energy density of these materials remains high.

While the oxides may only be suited for certain applications, Grey says that the important thing is to keep looking for new chemistries and new materials. "Fields stagnate if you don't keep looking for new compounds," she says. "These interesting materials give us a good insight into how we might design higher rate electrode materials."

Research paper


Related Links
University of Cambridge
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Liquid microscopy technique reveals new problem with lithium-oxygen batteries
Chicago IL (SPX) Jul 27, 2018
Using an advanced, new microscopy technique that can visualize chemical reactions occurring in liquid environments, researchers have discovered a new reason lithium-oxygen batteries - which promise up to five times more energy than the lithium-ion batteries that power electric vehicles and cell phones - tend to slow down and die after just a few charge/discharge cycles. They report their findings in the journal Nano Energy. "What we were able to see for the first time is that lithium peroxide deve ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Boeing's quest to take astronauts to space station hits snag

Seeking 72-hour Space Environment Forecasts with Updates on the Hour

First space tourist flights could come in 2019

A Two-Dimensional Space Program

ENERGY TECH
Roscosmos' Research Center's Staff Suspected of Leaking Data Abroad

Sustained hypersonic flight-enabling technology patent granted to Advanced Rockets Corporation

Hot firing proves solid rocket motor for Ariane 6 and Vega-C

2018 end to be busy for ISRO with several rocket launches

ENERGY TECH
'Storm Chasers' on Mars Searching for Dusty Secrets

NASA's MAVEN Spacecraft Finds That "Stolen" Electrons Enable Unusual Aurora on Mars

Name Europe's robot to roam and search for life on Mars

NASA May Have Destroyed Evidence for Organics on Mars 40 Years Ago

ENERGY TECH
PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

ENERGY TECH
Head of Roscosmos Research Center Paison Hands in Application for Dismissal

Space, not Brexit, is final frontier for Scottish outpost

Billion Pound export campaign to fuel UK space industry

mu Space confirms payload on Blue Origin's upcoming New Shepard flight

ENERGY TECH
Intense conditions turn nitrogen metallic

Manipulating single atoms with an electron beam

Scientists develop proteins that self-assemble into supramolecular complexes

SLAC's ultra-high-speed 'electron camera' catches molecules at a crossroads

ENERGY TECH
WSU researcher sees possibility of moon life

X-ray Data May Be First Evidence of a Star Devouring a Planet

Glowing bacteria on deep-sea fish shed light on evolution, 'third type' of symbiosis

Origami-inspired device helps marine biologists study aliens

ENERGY TECH
The True Colors of Pluto and Charon

Radiation Maps of Jupiter's Moon Europa: Key to Future Missions

Dozen new Jupiter moons declared

NASA Juno data indicate another possible volcano on Jupiter moon Io









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.