Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
New biochip technology uses tiny whirlpools to corral microbes
by Staff Writers
West Lafayette IN (SPX) Jan 11, 2013


Researchers have demonstrated a new technology that combines a laser and electric fields to create tiny centrifuge-like whirlpools to separate particles and microbes by size, a potential lab-on-a-chip system for medicine and research. Here the technique is used to collect a bacterium called Shewanella oneidensis. Credit: Purdue University.

Researchers have demonstrated a new technology that combines a laser and electric fields to create tiny centrifuge-like whirlpools to separate particles and microbes by size, a potential lab-on-a-chip system for medicine and research.

The theory behind the technology, called rapid electrokinetic patterning - or REP - has been described in technical papers published between 2008 and 2011. Now the researchers have used the method for the first time to collect microscopic bacteria and fungi, said Steven T. Wereley, a Purdue University professor of mechanical engineering.

The technology could bring innovative sensors and analytical devices for lab-on-a-chip applications, or miniature instruments that perform measurements normally requiring large laboratory equipment. REP is a potential new tool for applications including medical diagnostics; testing food, water and contaminated soil; isolating DNA for gene sequencing; crime-scene forensics; and pharmaceutical manufacturing.

"The new results demonstrate that REP can be used to sort biological particles but also that the technique is a powerful tool for development of a high-performance on-chip bioassay system," Wereley said.

A research paper about the technology was featured on the cover of the Dec. 7 issue of Lab on a Chip magazine, and the work is highlighted as a news item in the Jan. 13 issue of Nature Photonics, posted online Dec. 27. Mechanical engineering doctoral student Jae-Sung Kwon, working extensively with Sandeep Ravindranath, a doctoral student in agricultural and biological engineering, was lead author of the Lab on a Chip paper.

The technology works by using a highly focused infrared laser to heat a fluid in a microchannel containing particles or bacteria. An electric field is applied, combining with the laser's heating action to circulate the fluid in a "microfluidic vortex," whirling mini-maelstroms one-tenth the width of a human hair that work like a centrifuge to isolate specific types of particles based on size.

Particles of different sizes can be isolated by changing the electrical frequency, and the vortex moves wherever the laser is pointed, representing a method for positioning specific types of particles for detection and analysis.

The Lab on a Chip paper was written by Kwon; Ravindranath; Aloke Kumar, a researcher at the Oak Ridge National Laboratory; Joseph Irudayaraj, a Purdue professor of agricultural and biological engineering and deputy director of the Bindley Bioscience Center; and Wereley.

Much of the research has been based at the Birck Nanotechnology Center at Purdue's Discovery Park, in collaboration with Irudayaraj's group in the Bindley Bioscience Center.

The researchers used REP to collect three types of microorganisms: a bacterium called Shewanella oneidensis MR-1; Saccharomyces cerevisiae, a single-cell spherical fungus; and Staphylococcus aureus, a spherical bacterium. The new findings demonstrate the tool's ability to perform size-based separation of microorganisms, Wereley said.

"By properly choosing the electrical frequency we can separate blood components, such as platelets," Wereley said.

"Say you want to collect Shewanella bacteria, so you use a certain electrical frequency and collect them. Then the next day you want to collect platelets from blood. That's going to be a different frequency. We foresee the ability to dynamically select what you will collect, which you could not do that with conventional tools."

The overall research field is called "optoelectrical microfluidics." More research is needed before the technology is ready for commercialization.

"It won't be on the market in a year," Wereley said. "We are still in the research end of this. We are sort of at the stage of looking for the killer app for this technology."

REP may be used as a tool for nanomanufacturing because it shows promise for the assembly of suspended particles, called colloids. The ability to construct objects with colloids makes it possible to create structures with particular mechanical and thermal characteristics to manufacture electronic devices and tiny mechanical parts.

Purdue researchers are pursuing the technology for pharmaceutical manufacturing, Wereley said, because a number of drugs are manufactured from solid particles suspended in liquid. The particles have to be collected and separated from the liquid. This process is now done using filters and centrifuges.

REP also might be used to diagnose the presence of viruses, as well, although it has not yet been used to separate viruses from a sample, Wereley said.

Unlike conventional tools, REP requires only tiny samples, making it potentially practical for medical diagnostics and laboratory analysis.

.


Related Links
Purdue University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Power spintronics: Producing AC voltages by manipulating magnetic fields
Washington DC (SPX) Jan 07, 2013
Scientists are putting a new spin on their approach to generating electrical current by harnessing a recently identified electromotive force known as spinmotive force, which is related to the field of spintronics that addresses such challenges as improving data storage in computers. Now, a novel application of spintronics is the highly efficient and direct conversion of magnetic energy to ... read more


CHIP TECH
Mission would drag asteroid to the moon

Russia designs manned lunar spacecraft

GRAIL Lunar Impact Site Named for Astronaut Sally Ride

NASA probes crash into the moon

CHIP TECH
Mars500 project - salt balance of the Mars 'astronauts'

Simulated mission to Mars reveals critical data about sleep needs for astronauts

NASA's Big Mars Rover Makes First Use Of Its Brush

Lockheed Martin Delivered Core Structure For First GOES-R Satellite

CHIP TECH
AXE to Send 22 Guys to Space with New Apollo Campaign

IBM tops as tech titans scramble for US patents

Chinese tech firms pump up volume at CES

High fashion, high tech intersect at CES confab

CHIP TECH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

CHIP TECH
Crew Wraps Up Robonaut Testing

Station Crew Ringing in New Year

Expedition 34 Ready to Ring in New Year

New ISS crew docked at Space Station

CHIP TECH
Arianespace's industry leadership will continue with 12 launcher family missions planned in 2013

Arianespace addresses The Insurance Institute of London

Cargo loading underway with the next ATV resupply spacecraft to be launched by Ariane 5

SpaceX sets March 1 for launch to ISS

CHIP TECH
Earth-size planets common in galaxy

NASA's Hubble Reveals Rogue Planetary Orbit For Fomalhaut B

NASA, ESA Telescopes Find Evidence for Asteroid Belt Around Vega

Kepler Gets a Little Help From Its Friends

CHIP TECH
How the kilogram has put on weight

Japan to survey Pacific seabed for rare earth

3D printing creates 'virtual' fossil

LEON: the space chip that Europe built




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement