Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



EXO WORLDS
New NASA study improves search for habitable worlds
by Staff Writers
Greenbelt MD (SPX) Oct 20, 2017


This is a plot of what the sea ice distribution could look like on a synchronously rotating ocean world. The star is off to the right, blue is where there is open ocean, and white is where there is sea ice.

New NASA research is helping to refine our understanding of candidate planets beyond our solar system that might support life. "Using a model that more realistically simulates atmospheric conditions, we discovered a new process that controls the habitability of exoplanets and will guide us in identifying candidates for further study," said Yuka Fujii of NASA's Goddard Institute for Space Studies (GISS), New York, New York and the Earth-Life Science Institute at the Tokyo Institute of Technology, Japan, lead author of a paper on the research published in the Astrophysical Journal Oct. 17.

Previous models simulated atmospheric conditions along one dimension, the vertical. Like some other recent habitability studies, the new research used a model that calculates conditions in all three dimensions, allowing the team to simulate the circulation of the atmosphere and the special features of that circulation, which one-dimensional models cannot do. The new work will help astronomers allocate scarce observing time to the most promising candidates for habitability.

Liquid water is necessary for life as we know it, so the surface of an alien world (e.g. an exoplanet) is considered potentially habitable if its temperature allows liquid water to be present for sufficient time (billions of years) to allow life to thrive. If the exoplanet is too far from its parent star, it will be too cold, and its oceans will freeze. If the exoplanet is too close, light from the star will be too intense, and its oceans will eventually evaporate and be lost to space.

This happens when water vapor rises to a layer in the upper atmosphere called the stratosphere and gets broken into its elemental components (hydrogen and oxygen) by ultraviolet light from the star. The extremely light hydrogen atoms can then escape to space. Planets in the process of losing their oceans this way are said to have entered a "moist greenhouse" state because of their humid stratospheres.

In order for water vapor to rise to the stratosphere, previous models predicted that long-term surface temperatures had to be greater than anything experienced on Earth - over 150 degrees Fahrenheit (66 degrees Celsius). These temperatures would power intense convective storms; however, it turns out that these storms aren't the reason water reaches the stratosphere for slowly rotating planets entering a moist greenhouse state.

"We found an important role for the type of radiation a star emits and the effect it has on the atmospheric circulation of an exoplanet in making the moist greenhouse state," said Fujii. For exoplanets orbiting close to their parent stars, a star's gravity will be strong enough to slow a planet's rotation. This may cause it to become tidally locked, with one side always facing the star - giving it eternal day - and one side always facing away -giving it eternal night.

When this happens, thick clouds form on the dayside of the planet and act like a sun umbrella to shield the surface from much of the starlight. While this could keep the planet cool and prevent water vapor from rising, the team found that the amount of near-Infrared radiation (NIR) from a star could provide the heat needed to cause a planet to enter the moist greenhouse state.

NIR is a type of light invisible to the human eye. Water as vapor in air and water droplets or ice crystals in clouds strongly absorbs NIR light, warming the air. As the air warms, it rises, carrying the water up into the stratosphere where it creates the moist greenhouse.

This process is especially relevant for planets around low-mass stars that are cooler and much dimmer than the Sun. To be habitable, planets must be much closer to these stars than our Earth is to the Sun. At such close range, these planets likely experience strong tides from their star, making them rotate slowly.

Also, the cooler a star is, the more NIR it emits. The new model demonstrated that since these stars emit the bulk of their light at NIR wavelengths, a moist greenhouse state will result even in conditions comparable to or somewhat warmer than Earth's tropics. For exoplanets closer to their stars, the team found that the NIR-driven process increased moisture in the stratosphere gradually. So, it's possible, contrary to old model predictions, that an exoplanet closer to its parent star could remain habitable.

This is an important observation for astronomers searching for habitable worlds, since low-mass stars are the most common in the galaxy. Their sheer numbers increase the odds that a habitable world may be found among them, and their small size increases the chance to detect planetary signals.

The new work will help astronomers screen the most promising candidates in the search for planets that could support life. "As long as we know the temperature of the star, we can estimate whether planets close to their stars have the potential to be in the moist greenhouse state," said Anthony Del Genio of GISS, a co-author of the paper. "Current technology will be pushed to the limit to detect small amounts of water vapor in an exoplanet's atmosphere. If there is enough water to be detected, it probably means that planet is in the moist greenhouse state."

In this study, researchers assumed a planet with an atmosphere like Earth, but entirely covered by oceans. These assumptions allowed the team to clearly see how changing the orbital distance and type of stellar radiation affected the amount of water vapor in the stratosphere. In the future, the team plans to vary planetary characteristics such as gravity, size, atmospheric composition, and surface pressure to see how they affect water vapor circulation and habitability.

The research was funded by the NASA Astrobiology Program through the Nexus for Exoplanet System Science; the NASA Postdoctoral Program, administered by Oak Ridge Affiliated Universities, Oak Ridge, Tennessee, and Universities Space Research Association, Columbia, Maryland; and a Grant-in-Aid from the Japan Society for the Promotion of Science, Tokyo, Japan (No.15K17605).

EXO WORLDS
Giant Exoplanet Hunters: Look for Debris Disks
Pasadena CA (JPL) Oct 17, 2017
There's no map showing all the billions of exoplanets hiding in our galaxy - they're so distant and faint compared to their stars, it's hard to find them. Now, astronomers hunting for new worlds have established a possible signpost for giant exoplanets. A new study finds that giant exoplanets that orbit far from their stars are more likely to be found around young stars that have a disk of ... read more

Related Links
NASA Astrobiology Program
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Russia's space agency says glitch in manned Soyuz landing

Russia launches cargo ship to space station

Roscosmos: International Space Exploration to Continue Despite Geopolitical Situation

US spacewalkers install 'new eyes' at space station

EXO WORLDS
First Four Space Launch System Flight Engines Ready To Rumble

ESA role in Europe's first all-electric telecom satellite

Rocket motor for Ariane 6 and Vega-C is cast for testing

RS-25 Engines Ready for Maiden Flight of NASA's Space Launch System

EXO WORLDS
What NASA's simulated missions tell us about the need for Martian law

Mimetic Martian water is highly pressurized, experiments show

Debate over Mars exploration strategy heats up in astrobiology journal

Webcam on Mars Express surveys high-altitude clouds

EXO WORLDS
China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

China's cargo spacecraft separates from Tiangong-2 space lab

EXO WORLDS
Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

SpaceX launches 10 satellites for Iridium mobile network

Lockheed Martin Completes First Flexible Solar Array for LM 2100 Satellite

EXO WORLDS
Understanding rare earth emulsions

Chemical treatment improves quantum dot lasers

Missing link between new topological phases of matter discovered

Space radiation won't stop NASA's human exploration

EXO WORLDS
Astronomers find potential solution into how planets form

A star that devoured its own planets

Giant Exoplanet Hunters: Look for Debris Disks

Are Self-Replicating Starships Practical

EXO WORLDS
Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement