. 24/7 Space News .
WATER WORLD
New England's glacial upland soils provide major groundwater storage reservoir
by Staff Writers
Amherst MA (SPX) Apr 13, 2017


At left, Seth Oliver with Leah Santangelo, right, both hydrogeology UMass Amherst graduates, taking water level measurements at a till site in Blandford, Mass., for a recent study of natural groundwater storage reservoirs in New England by hydrologist David Boutt at the University of Massachusetts Amherst. For the first time, they quantified upland aquifer systems dominated by thin deposits of surface till -- a jumbled, unsorted material deposited by glaciers, which make up about 70 percent of the active and dynamic storage for the region. Image courtesy UMass Amherst.

A recent study of natural groundwater storage reservoirs in New England by hydrologist David Boutt at the University of Massachusetts Amherst found that upland aquifer systems dominated by thin deposits of surface till - a jumbled, unsorted material deposited by glaciers - make up about 70 percent of the active and dynamic storage for the region.

As Boutt explains, "This is the first time that the relative role of upland vs. valley groundwater storage has been quantified. These results are the first to point to the outstanding importance of these thin glacial sediments in landscape-scale hydrologic budgets. This is really important for understanding how water gets into streams, supplying base flow in streams during summer months and droughts, and for recharging valley fill aquifers."

He adds that the "till reservoir" is traditionally neglected as an important groundwater storage reservoir because of its limited thickness and perceived low conductivity. But his new study highlights "the importance of a process-based understanding of how different landscape hydrogeologic units contribute to the overall hydrologic response of a region."

"Shallow tills of Massachusetts and New England are really important storage reservoirs of water for recharge to alluvial aquifers and for base flow to streams," he adds. This subsurface material fills and drains on a multi-annual basis and serves as the main mechanism to deliver water to valley fill aquifers and underlying bedrock aquifers. Details appear in the journal Hydrological Processes.

For this work, Boutt used 124 long-term groundwater wells distributed across the region to assess how annual local water flow properties and the hydrogeologic setting influence the aquifer system response to climate variability. The area is underlaid by low-storage, fractured metamorphic and crystalline bedrock and criss-crossed by valleys filled with glacial and post-glacial fill sediments. About 60 percent of the total area are uplands covered by thin glacial till, he notes.

The hydrologist points out that the monthly data in this study "contain rich signals of how the water table responds to climatic variability and the impact of hydrogeology on hydrological processes." He cautions, however, that many sites lack detailed geologic logs, local water table maps and detailed hydrogeologic characterization, all of which limit the study's ability to explore detailed questions about a specific site response except in general terms.

Boutt says that with changes in land use and climate, it is important to understand past change in the response of the hydrologic system to detect and predict future impacts.

Further, this analysis yields "important insights into the hydraulic connection of till/bedrock aquifer systems to the overall hydraulic response of the regional system." Even though total storage in upper till is "generally lower than that of the alluvial valley fill, it is clear that the annual active storage in the till is much greater," he adds.

This study "documents the importance of upland aquifer response and dynamic storage to climate variability over decadal time scales. Despite the thin nature of soils and sediments overlying bedrock systems, they play an outstanding role in storing and releasing water to headwater streams and downgradient aquifer systems." Boutt attributes the variability in response to the hydrogeologic setting of the aquifer and properties of the host material.

He concludes, "Trends in aquifer storage when averaged over the 124 wells in the study region show an upward positive trend indicating that the water table has risen over the last 40 years. When the trends are examined over the period of 1970-2010, they display a majority of upward trends despite a lack of upward trends in precipitation and streamflow on annual or seasonal basis. Increases in storage in the aquifers respond to overall increases in precipitation at the multi-annual decadal timescale distributed evenly across aquifer groupings."

WATER WORLD
UBC invention uses bacteria to purify water
Vancouver, Canada (SPX) Apr 10, 2017
A University of British Columbia-developed system that uses bacteria to turn non-potable water into drinking water will be tested next week in West Vancouver prior to being installed in remote communities in Canada and beyond. The system consists of tanks of fibre membranes that catch and hold contaminants--dirt, organic particles, bacteria and viruses--while letting water filter through. ... read more

Related Links
University of Massachusetts at Amherst
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
You Say Tomato, I Say Tomatosphere: ISS Science to the Classroom

NASA Invests in 22 Visionary Exploration Concepts

No Roscosmos plans to send space tourists to ISS before 2020

US, Russian Astronauts Prepare for April Crew Swap on Space Station

WATER WORLD
Dream Chaser to use Europe's next-generation docking system

Europe's largest sounding rocket launched from Esrange

Bezos sells $1 bn in Amazon stock yearly to pay for rocket firm

US-Russia Venture Hopes to Sell More RD-180 Rocket Engines to US

WATER WORLD
Chile desert combed for clues to life on Mars

Russia critcal to ExoMars Project says Italian Space Agency Head

New MAVEN findings reveal how Mars' atmosphere was lost to space

Potential Mars Airplane Resumes Flight

WATER WORLD
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

WATER WORLD
Ukraine in talks with ESA to become member

BRICS States Want to Expand Cooperation to Space Science

Mitsubishi Electric to Build New Satellite Production Facility

Horizon 2020 European funded DEMOCRITOS project concludes work with some key outcomes

WATER WORLD
Despite EU fines, Greece struggling to promote recycling

New method for 3-D printing extraterrestrial materials

Ultra-thin multilayer film for next-generation data storage and processing

USC Viterbi researchers develop new class of optoelectronic materials

WATER WORLD
Distantly related fish find same evolutionary solution to dark water

'Body awareness' offers further proof of elephant intelligence

'Smart' cephalopods trade off genome evolution for prolific RNA editing

Exoplanet mission gets ticket to ride

WATER WORLD
When Jovian Light and Dark Collide

Neptune's journey during early planet formation was 'smooth and calm'

Hubble takes close-up portrait of Jupiter

Neptune's movement from the inner to the outer solar system was smooth and calm









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.