Subscribe free to our newsletters via your
. 24/7 Space News .

New Discovery Could Enable Development Of Faster Computers
by Staff Writers
Riverside CA (SPX) Jul 01, 2008

The researchers found that when the structure's MgO interface is very thin (less than two atomic layers), spin down electrons pass through to the ferromagnet, while spin up electrons are reflected back, leaving only spin up electrons in the semiconductor.

Physicists at UC Riverside have made an accidental discovery in the lab that has potential to change how information in computers can be transported or stored.

Dependent on the "spin" of electrons, a property electrons possess that makes them behave like tiny magnets, the discovery could help in the development of spin-based semiconductor technology such as ultrahigh-speed computers.

The researchers were experimenting with ferromagnet/semiconductor (FM/SC) structures, which are key building blocks for semiconductor spintronic devices (microelectronic devices that perform logic operations using the spin of electrons).

The FM/SC structure is sandwich-like in appearance, with the ferromagnet and semiconductor serving as microscopically thin slices between which lies a thinner still insulator made of a few atomic layers of magnesium oxide (MgO).

The researchers found that by simply altering the thickness of the MgO interface they were able to control which kinds of electrons, identified by spin, traveled from the semiconductor, through the interface, to the ferromagnet.

Experimental results:

- The spin of an electron is represented by a vector, pointing up for an Earth-like west-to-east spin; and down for an east-to-west spin.

- In the researchers' experiment with the FM/SC structures, both spin up and spin down electrons were allowed to travel from the semiconductor to the ferromagnet.

- The researchers found that when the structure's MgO interface is very thin (less than two atomic layers), spin down electrons pass through to the ferromagnet, while spin up electrons are reflected back, leaving only spin up electrons in the semiconductor.

- They also found that when the interface is thicker than six atomic layers, both spin up and spin down electrons are reflected back, leaving electrons with zero net spin in the semiconductor.

But the surprising result for the researchers was that at an intermediate thickness, ranging from two to six atomic layers, the selectivity of the interface completely changes.

"We see a dramatic and complete reversal in the spin of electrons that pass through the interface," said Roland Kawakami, an assistant professor of physics who led the research team. "This time, spin up electrons pass through while spin down electrons are reflected back to the semiconductor. In other words, the thickness of the MgO interface determines whether spin up or spin down electrons are allowed to pass through it."

According to his research team, such a "spin reversal" can be used to control current flow.

Significance of the discovery:

"Electron spins are oriented at random in an ordinary electric circuit, and, therefore, do not affect current flow," explained Yan Li, the first author of the research paper, who made the discovery. "But if spin is polarized, that is, aligned in one direction, you can manipulate the flow of current and the transport of information - a feature that would be of great interest to the semiconductor industry. What is amazing is that only a couple of atomic layers of MgO can completely reverse the spin selection of the interface. This is unexpected because MgO is not a magnetic material."

Li, a graduate student in the Department of Physics and Astronomy working toward her doctorate in physics, said the research team will work next on making electronic devices based on the spin reversal. "This will not only test its feasibility for applications, but also help determine the cause of the spin reversal, which is still unclear," she said.

Kawakami's lab is one of very few labs in the world that perform both the advanced material synthesis and pulsed laser measurements needed for experiments with FM/SC structures.

"Without the strong interplay between the materials development and optical measurements, the type of discovery we made probably would not have been possible," Kawakami said.

A new area of research, spintronics already has helped develop disk-drive read heads and non-volatile memory chips. Researchers believe spintronics also will make "instant-on" computers one day, as well as chips that can store and process data.


Related Links
University of California - Riverside
Super Computer News and HPC Technology

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

NASA Develops Highest Resolution Visualization System To Date
Moffett Field CA (SPX) Jun 26, 2008
The power to visualize highly complex information in a way that's easier for the human mind to grasp is taking a giant leap forward with the advent of NASA's new hyperwall-2 system unveiled at Ames Research Center. Developed by scientists and engineers in the NASA Advanced Supercomputing (NAS) Division at Ames, the 128-screen hyperwall-2, capable of rendering one quarter billion pixel ... read more

Looking For Early Earth...On The Moon

Moon-Bound NASA Spacecraft Passes Major Preflight Tests

Northrop Grumman Completes LCROSS Thermal Vacuum Testing

NASA Study Provides Next Step To Establishing Lunar Outpost

Phoenix Scrapes To Icy Soil In Wonderland

Swedish And Swiss High Tech On A Long Duration Balloon Flight Over The Atlantic

NASA's Phoenix Mars Lander Puts Soil In Chemistry Lab

Phoenix Returns Treasure Trove For Science

Arthur C. Clarke - A Visionary Astrobiologist

NASTAR Center Celebrates Launching Private Space Travelers And Adventure Seekers Into Space

Launch pad repairs priced at $2.7 million

Aldrin warns US risks falling behind in space race

A Better Focus On Shenzhou

Gallup Poll Shows Americans Unconcerned About China Space Program

Chinese company develops 'UFO': report

China manned space flight set for October: state media

Discovery undocks from ISS

Shuttle astronauts bid farewell to space station crew

Shuttle Astronauts Bid Farewell To Space Station Crew

Astronauts test Japanese robotic arm

Payload Integration Complete For Arianespace's Fourth Mission Of 2008

Successful Ariane 5 Solid Rocket Booster Test Firing

CU-Boulder Students Set To Launch Student Rocket Payloads June 27

ProtoStar I And BADR-6 Are Ready For Next Ariane 5 Launch

Chemical Clues Point To Dusty Origin For Earth-Like Planets

Astronomers discover clutch of 'super-Earths'

Vanderbilt Astronomers Getting Into Planet-Finding Game

NASA Selects MIT-Led Team To Develop Planet-Searching Satellite

Herschel Undergoes Acoustic And Vibration Tests

Russian-US Launch Firm To Put Satellite In Orbit In August

BAE Computers To Manage Data Processing For Satellite Missions

Space Radar To Improve Mining Safety

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement