. 24/7 Space News .
EXO WORLDS
New Clues to Compositions of TRAPPIST-1 Planets
by Staff Writers
Pasadena CA (JPL) Feb 06, 2018

Astronomers used the NASA/ESA Hubble Space Telescope to analyse light from the nearby star TRAPPIST-1 as it passed through the atmospheres of four Earth-sized planets in the star's habitable zone - the region at a distance from the star where liquid water, the key to life as we know it, could exist on their surfaces. The astronomers were looking for the signatures of certain gases, including hydrogen, in the atmospheres that were imprinted on the starlight.

The graphic at the top shows a model spectrum containing the signatures of gases that the astronomers would expect to see if the exoplanets' atmospheres were puffy and dominated by primordial hydrogen from the distant worlds' formation. The Hubble observations, however, revealed that the planets do not have hydrogen-dominated atmospheres. The flatter spectrum shown in the lower illustration indicates that Hubble did not spot any traces of water or methane, which are abundant in hydrogen-rich atmospheres. The researchers concluded that the atmospheres are composed of heavier elements residing at much lower altitudes than could be measured by the Hubble observations.

The seven Earth-size planets of TRAPPIST-1 are all mostly made of rock, with some having the potential to hold more water than Earth, according to a new study published in the journal Astronomy and Astrophysics. The planets' densities, now known much more precisely than before, suggest that some planets could have up to 5 percent of their mass in water - which is 250 times more than the oceans on Earth.

The form that water would take on TRAPPIST-1 planets would depend on the amount of heat they receive from their star, which is a mere 9 percent as massive as our Sun. Planets closest to the star are more likely to host water in the form of atmospheric vapor, while those farther away may have water frozen on their surfaces as ice. TRAPPIST-1e is the rockiest planet of them all, but still is believed to have the potential to host some liquid water.

"We now know more about TRAPPIST-1 than any other planetary system apart from our own," said Sean Carey, manager of the Spitzer Science Center at Caltech/IPAC in Pasadena, California, and co-author of the new study.

"The improved densities in our study dramatically refine our understanding of the nature of these mysterious worlds."

Since the extent of the system was revealed in February 2017, researchers have been working hard to better characterize these planets and collect more information about them. The new study offers better estimates than ever for the planets' densities.

What Is TRAPPIST-1?
TRAPPIST-1 is named for the Transiting Planets and Planetesimals Small Telescope (TRAPPIST) in Chile, which discovered two of the seven planets we know of today - announced in 2016. NASA's Spitzer Space Telescope, in collaboration with ground-based telescopes, confirmed these planets and uncovered the other five in the system.

Since then, NASA's Kepler space telescope has also observed the TRAPPIST-1 system, and Spitzer began a program of 500 additional hours of TRAPPIST-1 observations, which will conclude in March. This new body of data helped study authors paint a clearer picture of the system than ever before - although there is still much more to learn about TRAPPIST-1.

The TRAPPIST-1 planets huddle so close to one another that a person standing on the surface of one of these worlds would have a spectacular view of the neighboring planets in the sky. Those planets would sometimes appear larger than the Moon looks to an observer on Earth. They may also be tidally locked, meaning the same side of the planet is always facing the star, with each side in perpetual day or night. Although the planets are all closer to their star than Mercury is to the Sun, TRAPPIST-1 is such a cool star, some of its planets could still, in theory, hold liquid water.

In the new study, scientists led by Simon Grimm at the University of Bern in Switzerland created computer models to better simulate the planets based on all available information. For each planet, researchers had to come up with a model based on the newly measured masses, the orbital periods and a variety of other factors - making it an extremely difficult, "35-dimensional problem," Grimm said. It took most of 2017 to invent new techniques and run simulations to characterize the planets' compositions.

What Might These Planets Look Like?
It is impossible to know exactly how each planet looks, because they are so far away. In our own solar system, the Moon and Mars have nearly the same density, yet their surfaces appear entirely different.

"Densities, while important clues to the planets' compositions, do not say anything about habitability. However, our study is an important step forward as we continue to explore whether these planets could support life," said Brice-Olivier Demory, co-author at the University of Bern.

Based on available data, here are scientists' best guesses about the appearances of the planets:

TRAPPIST-1b, the innermost planet, is likely to have a rocky core, surrounded by an atmosphere much thicker than Earth's. TRAPPIST-1c also likely has a rocky interior, but with a thinner atmosphere than planet b. TRAPPIST-1d is the lightest of the planets - about 30 percent the mass of Earth. Scientists are uncertain whether it has a large atmosphere, an ocean or an ice layer - all three of these would give the planet an "envelope" of volatile substances, which would make sense for a planet of its density.

Scientists were surprised that TRAPPIST-1e is the only planet in the system slightly denser than Earth, suggesting it may have a denser iron core than our home planet. Like TRAPPIST-1c, it does not necessarily have a thick atmosphere, ocean or ice layer - making these two planets distinct in the system. It is mysterious why TRAPPIST-1e has a much rockier composition than the rest of the planets. In terms of size, density and the amount of radiation it receives from its star, this is the most similar planet to Earth.

TRAPPIST-1f, g and h are far enough from the host star that water could be frozen as ice across these surfaces. If they have thin atmospheres, they would be unlikely to contain the heavy molecules of Earth, such as carbon dioxide.

"It is interesting that the densest planets are not the ones that are the closest to the star, and that the colder planets cannot harbor thick atmospheres," said Caroline Dorn, study co-author based at the University of Zurich, Switzerland.

How Do We Know?
Scientists are able to calculate the densities of the planets because they happen to be lined up such that when they pass in front of their star, our Earth- and space-based telescopes can detect a dimming of its light. This is called a transit. The amount by which the starlight dims is related to the radius of the planet.

To get the density, scientists take advantage of what are called "transit timing variations." If there were no other gravitational forces on a transiting planet, it would always cross in front of its host star in the same amount of time - for example, Earth orbits the Sun every 365 days, which is how we define one year. But because the TRAPPIST-1 planets are packed so close together, they change the timing of each other's "years" ever so slightly. Those variations in orbital timing are used to estimate the planets' masses. Then, mass and radius are used to calculate density.

Next Steps
The next step in exploring TRAPPIST-1 will be NASA's James Webb Space Telescope, which will be able to delve into the question of whether these planets have atmospheres and, if so, what those atmospheres are like. A recent study using NASA's Hubble Space Telescope found no detection of hydrogen-dominated atmospheres on planets TRAPPIST-1d, e and f - another piece of evidence for rocky composition - although the hydrogen-dominated atmosphere cannot be ruled out for g.

Illustrations of these worlds will change as ongoing scientific investigations home in on their properties.

"Our conceptions of what these planets look like today may change dramatically over time," said Robert Hurt, senior visualization scientist at the Spitzer Science Center.

"As we learn more about these planets, the pictures we make will evolve in response to our improved understanding.


Related Links
TRAPPIST-1 at NASA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
First Light for Planet Hunter ExTrA at La Silla
Garching, Germany (SPX) Jan 29, 2018
A new national facility at ESO's La Silla Observatory has successfully made its first observations. The ExTrA telescopes will search for and study Earth-sized planets orbiting nearby red dwarf stars. ExTrA's novel design allows for much improved sensitivity compared to previous searches. Astronomers now have a powerful new tool to help in the search for potentially habitable worlds. The newest addition to ESO's La Silla observatory in northern Chile, Exoplanets in Transits and their Atmospheres (E ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Putting down roots in space

Celebrating 60 years of groundbreaking US space science

Russia to start offering spacewalks for tourists

Spinoff 2018 Highlights Space Technology Improving Life on Earth

EXO WORLDS
Genius or joker: Elon Musk flamethrowers spark controversy

SpaceX blasts off Luxembourg government satellite

Putin gives nod to creation of Russian super heavy-lift launch vehicle

Indra and Zero 2 Infinity are teaming up to forge a path to the stars

EXO WORLDS
Opportunity Celebrates 14 Years of Working on Mars

Mount Sharp 'Photobombs' Mars Curiosity Rover

NASA tests power system to support manned missions to Mars

European-Russian space mission steps up the search for life on Mars

EXO WORLDS
China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

Yang Liwei looks back at China's first manned space mission

Space agency to pick those with the right stuff

EXO WORLDS
Brexit prompts EU to move satellite site to Spain

Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

EXO WORLDS
Quantum control

Virtual reality goes magnetic

A frequency-doubling unit for transportable lasers

Pearly material for bendable heating elements

EXO WORLDS
Stellar embryos in dwarf galaxy contain complex organic molecules

First Light for Planet Hunter ExTrA at La Silla

A new 'atmospheric disequilibrium' could help detect life on other planets

Johns Hopkins scientist proposes new limit on the definition of a planet

EXO WORLDS
Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.