. 24/7 Space News .
CHIP TECH
New 3-D wiring technique brings scalable quantum computers closer to reality
by Staff Writers
Waterloo, Canada (SPX) Oct 24, 2016


Researchers from the Institute for Quantum Computing at the University of Waterloo led the development of a quantum socket, representing a significant step towards to the realization of a scalable quantum computer. Image courtesy University of Waterloo. For a larger version of this image please go here.

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Bejanin, a PhD candidate with IQC and the Department of Physics and Astronomy at Waterloo.

"He and Thomas McConkey, PhD candidate from IQC and the Department of Electrical and Computer Engineering at Waterloo, are lead authors on the study that appears in the journal Physical Review Applied as an Editors' Suggestion and is featured in Physics.

"The technique connects classical electronics with quantum circuits, and is extendable far beyond current limits, from one to possibly a few thousand qubits."

One promising implementation of a scalable quantum computing architecture uses a superconducting qubit, which is similar to the electronic circuits currently found in a classical computer, and is characterized by two states, 0 and 1.

Quantum mechanics makes it possible to prepare the qubit in superposition states, meaning that the qubit can be in states 0 and 1 at the same time. To initialize the qubit in the 0 state, superconducting qubits are brought down to temperatures close to -273 degrees Celsius inside a cryostat, or dilution refrigerator.

To control and measure superconducting qubits, the researchers use microwave pulses. The pulses are typically sent from dedicated sources and pulse generators through a network of cables connecting the qubits in the cryostat's cold environment to the room-temperature electronics.

The network of cables required to access the qubits inside the cryostat is a complex infrastructure and, until recently, has presented a barrier to scaling the quantum computing architecture.

"All wire components in the quantum socket are specifically designed to operate at very low temperatures and perform well in the microwave range required to manipulate the qubits," said Matteo Mariantoni, a faculty member at IQC and the Department of Physics and Astronomy at Waterloo and senior author on the paper.

"We have been able to use it to control superconducting devices, which is one of the many critical steps necessary for the development of extensible quantum computing technologies."

The paper, Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket, is a collaborative effort of researchers at INGUN Prufmittelbau GmbH, Germany, INGUN USA, and Google in the United States, plus the following researchers from IQC and Waterloo: Jeremy Bejanin, Thomas McConkey, John Rinehart, Carolyn Earnest, Corey Rae McRae, Daryoush Shiri, James Bateman, Yousef Rohanizadegan and Matteo Mariantoni.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Waterloo
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Ultra-thin ferroelectric material for next-generation electronics
Tokyo, Japan (SPX) Oct 27, 2016
'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a m ... read more


CHIP TECH
Small impacts are reworking the moon's soil faster than scientists thoug

2016 Ends with Three Supermoons

Spectacular Lunar Grazing Occultation of Bright Star on Oct. 18

Hunter's Supermoon to light up Saturday night sky

CHIP TECH
Did it crash or land? Search on for Europe's Mars craft

Rover Conducting Science Investigations at 'Spirit Mount'

MAVEN mission observes ups and downs of water escape from Mars

A graveyard of broken dreams and landers

CHIP TECH
Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Growing Interest: Students Plant Seeds to Help NASA Farm in Space

CHIP TECH
Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

China to enhance space capabilities with launch of Shenzhou-11

China closer to establishing permanent space station

CHIP TECH
Orbital cargo ship arrives at space station

New Instrument on ISS to Study Ultra-Cold Quantum Gases

Two Russians, one American blast off to ISS

Tools Drive NASA's TReK to New Discoveries

CHIP TECH
Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

US-Russia Standoff Leaves NASA Without Manned Launch Capabilities

Swedish Space Corporation Celebrates 50th Anniversary of Esrange Space Center

Ariane 5 ready for first Galileo payload

CHIP TECH
Oldest known planet-forming disk found

ALMA spots possible formation site of icy giant planet

Astronomers find oldest known planetary disk

Proxima Centauri might be more sunlike than we thought

CHIP TECH
The smart wheelchair

Researchers find way to tune thermal conductivity of 2-D materials

Polymer breakthrough to improve things we use everyday

Metamaterial uses light to control its motion









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.