Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Neutrons offer guide to getting more out of solid-state lithium-ion batteries
by Staff Writers
Oak Ridge TN (SPX) Dec 22, 2015

In situ neutron diffraction visualizes the synthesis mechanism, involving multi-phase evolutions, of garnet-type fast lithium-ion solid conductors. The neutron diffraction determines the lithium vacancy distribution in the garnet lattice, and reveals the governing mechanism of highly conductive pathways via the selective element doping. Image courtesy Oak Ridge National Laboratory. For a larger version of this image please go here.

Although they don't currently have as much conductivity, solid-state electrolytes designed for lithium-ion batteries (LIBs) are emerging as a safer alternative to their more prevalent - sometimes flammable - liquid-electrolyte counterparts.

However, a new study conducted at Oak Ridge National Laboratory's Spallation Neutron Source (SNS), a Department of Energy Office of Science user facility, has revealed promising results that could drastically boost the performance of solid-state electrolytes, and could potentially lead to a safer, even more efficient battery.

Using neutron diffraction techniques via the VULCAN instrument, SNS beam line 7, lead instrument scientist Ke An and his team recently concluded an in-depth study probing the entire structure evolution of doped garnet-type electrolytes during the synthesis process to unravel the mechanism that boosts the lithium-ionic conductivity. Their findings were recently published in the journals Chemistry of Materials and the Journal of Materials Chemistry A.

"The question we want to answer is how can we correlate the material's structure with its performance," An said. "Finding an answer to this will be very useful to the materials community, particularly in the field of electrochemical devices like batteries."

The problem with liquid electrolytes, says An, is that while they can produce high levels of conductivity - which is good - in some cases, they become flammable under high voltages or high temperatures, causing the battery to "explode" - which is obviously very bad.

In general, solid electrolyte-based LIBs consist of two electrodes, a positive and a negative, and an electrolyte in the middle, forming the battery's core, which facilitates the movement of ions traveling back and forth between the electrodes.

In order to achieve a desired level of conductivity in the electrolyte, ions require vacancies in the crystal structure, or tunnels for the ions to "hop" to and from - kind of like connecting the dots.

Lithium lanthanum zirconates, or materials based on Li7La3Zr2O12 with a garnet structure, are favorable for application as electrolytes because they promote fast lithium transport.

However, explained An, synthesized garnets often develop unwanted low-conductivity secondary phases, which in some cases can be detrimental to electrolytic performance. Essentially what that means is that useful vacancies for ions to "hop" don't always develop where designers want them to.

During synthesis, myriad chemical reactions take place as the material goes through several different phases, beginning with the mixing of chemicals or materials, then annealing, or heating the structure for desired performance and consistency, followed by a cool down period in which the structure is hardened. Analyzing what's going on during each phase would be next to impossible without the use of special instruments and techniques.

"Getting better performance out of the electrolyte can't be done without first understanding what's going on inside the structure. We need to understand what the mechanisms are that drive the synthesis process," said materials scientist and lead author Yan Chen, a postdoctoral research associate at SNS.

"VULCAN enables us to perform in situ experiments, visualizing the structure's evolution in real time without disturbing the garnet synthesis process."

With VULCAN's help they monitored the low-conductivity phases' formation during the thermal process, and found that it could be mitigated by doping the material - adding trace amounts of various elements that have high valences, or an affinity to create bonds, to reduce the effect. Being able to both suppress the formation of those unwanted phases and increase the number of useful vacancies for ion transport proved to be the key to unlocking garnets with high electrolytic performance.

"By tracking the lithium vacancies as functions of temperature and dopants, we found a common rule that the different dopants obey, and how they redistribute the vacancies in the framework of the garnets," Chen said.

"Furthermore, a comprehensive analysis of neutron diffraction results revealed how the dopants tune vacancy quantity, control vacancy distribution, and alter the charge carrier pathways in solid electrolytes."

Thanks to the experiments by An and his team, materials researchers now have a proven method for achieving the best results in garnet structures - results that are sure to lead to safer materials with much needed savings of time and money.

"Now when people look at our work they can be guided how to make high ionic conductivity by choosing the right element with the right valence rather than repeatedly doing trial and error experiments on every single additional element - work that takes you a lot of time," said An. "Now we can give you a simple formula to do it, and you should end up with a better material."

Chen's coauthors include Ezhiylmurugan Rangasamy, Chengdu Liang, Clarina R. dela Cruz, and Ke An. Related research of this material was conducted at the POWGEN instrument, SNS beam line 11A, using time of flight neutron diffraction data, and published in Advanced Energy Materials.


Related Links
Oak Ridge National Laboratory
Powering The World in the 21st Century at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Real-time tracking shows how batteries degrade
London, UK (SPX) Dec 22, 2015
How disposable Lithium batteries degrade during normal use has been tracked in real-time by a UCL-led team using sophisticated 3D imaging, giving a new way to non-invasively monitor performance loss and guide the development of more effective commercial battery designs. The team recently used the same technique to show how rechargeable Lithium-ion batteries fail when they are exposed to ex ... read more

Rare full moon on Christmas Day

LADEE Mission Shows Force of Meteoroid Strikes on Lunar Exosphere

XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

Opportunity positioned on steeper slopes for another Martian winter

NASA suspends March launch of InSight mission to Mars

University researchers test prototype spacesuits at Kennedy

Martian gullies likely contain 'no water': study

Researchers Recall Work on First Rendezvous in Space

NASA Accepting Applications for Future Explorers

China drives global patent applications to new high

Australia seeks 'ideas boom' with tax breaks, visa boosts

Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

Two whacks is all it takes for spacewalk repair

Unscheduled spacewalk likely on Monday

NASA spacewalk to fix ISS rail car

British astronaut docks with ISS as country cheers debut trip

NASA orders second Boeing Crew Mission to ISS

SpaceX rocket landing opens 'new door' to space travel

ESA and Arianespace ink James Webb Space Telescope launch contract

Moscow Confirms Suspension of Russian-Ukrainian 'Dnepr' Rocket Launches

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

Israel's Amos-5 Satellite Failure Caused by Power Supply Malfunction

Modeling microstructures in polycrystalline materials

Piece by piece NASA is 3-D printing a rocket engine

Scientists create atomically thin boron

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.