Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
Natural affinities may have set stage for life to ignite
by Sandra Hines for UW News
Seattle WA (SPX) Jul 31, 2013


A computer graphic of an RNA molecule. Image courtesy Richard Feldmann.

The chemical components crucial to the start of life on Earth may have primed and protected each other in never-before-realized ways, according to new research led by University of Washington scientists.

It could mean a simpler scenario for how that first spark of life came about on the planet, according to Sarah Keller, UW professor of chemistry, and Roy Black, UW affiliate professor of bioengineering, co-authors of a paper published online July 29 in the Proceedings of the National Academy of Sciences.

Scientists have long thought that life started when the right combination of bases and sugars produced self-replicating ribonucleic acid, or RNA, inside a rudimentary "cell" composed of fatty acids. Under the right conditions, fatty acids naturally form into bag-like structures similar to today's cell membranes.

In testing one of the fatty acids representative of those found before life began - decanoic acid - the scientists discovered that the four bases in RNA bound more readily to the decanoic acid than did the other seven bases tested.

By concentrating more of the bases and sugar that are the building blocks of RNA, the system would have been primed for the next steps, reactions that led to RNA inside a bag.

"The bag is the easy part. Making RNA from scratch is very hard," Keller said. "If the parts that come together to make RNA happen to preferentially stick to the surfaces of bags, then everything gets easier."

The scientists also discovered a second, mutually reinforcing mechanism: The same bases of RNA that preferentially stuck to the fatty acid also protected the bags from disruptive effects of salty seawater. Salt causes the fatty acid bags to clump together instead of remaining as individual "cells."

The researchers found that several sugars also give protective benefit but the sugar from RNA, ribose, is more effective than glucose or even xylose, a sugar remarkably similar to ribose, except its components are arranged differently.

The ability of the building blocks of RNA to stabilize the fatty acid bags simplifies one part of the puzzle of how life started, Keller said.

"Taken together, these findings yield mutually reinforcing mechanisms of adsorption, concentration and stabilization that could have driven the emergence of primitive cells," she said.

Black, lead author of the paper, originated the ideas behind the work. A retired biochemist with Amgen Inc., Black contributed funding for the work to Keller's lab - the work also received National Science Foundation funding - and became a UW affiliate professor volunteering in the Keller lab.

"I think that a pretty common story is that some young hotshot comes to UW to start her or his career and does a risky experiment that uncovers new fundamental science," Keller said. "Here we have an older hotshot who came to UW at the end of his Amgen career to do a risky experiment that uncovers new fundamental science.

"I think the story also emphasizes that people don't become scientists just because it is a good job - they do it because they love it," she said. "Roy worked for a year and a half straight, volunteering his time to UW on something he didn't get paid for, just for the joy and the curiosity."

The paper's other co-authors are Matthew Blosser at the UW, Benjamin Stottrup at Augsburg College in Minneapolis, Ravi Tavakley at the University of Minnesota, and David Deamer at the University of California, Santa Cruz.

.


Related Links
University of Washington
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Geochemical 'fingerprints' leave evidence that megafloods eroded steep gorge
Seattle WA (SPX) Jul 23, 2013
The Yarlung-Tsangpo River in southern Asia drops rapidly through the Himalaya Mountains on its way to the Bay of Bengal, losing about 7,000 feet of elevation through the precipitously steep Tsangpo Gorge. For the first time, scientists have direct geochemical evidence that the 150-mile long gorge, possibly the world's deepest, was the conduit by which megafloods from glacial lakes, perhaps ... read more


EARLY EARTH
Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

First-ever lunar south pole mission could be attempted by 2016

EARLY EARTH
Mars Rover Opportunity Nears Solander Point

Curiosity Mars Rover Gleams in View from Orbiter

Mars Curiosity sets one-day driving distance record

Scientists establish age of Mars meteorites found on Earth

EARLY EARTH
First Liquid Hydrogen Tank Barrel Segment for SLS Core Completed

Tenth Parachute Test for NASA's Orion Adds 10,000 Feet of Success

Zero Point Frontiers Delivers Favorable Architecture Assessment to Golden Spike Company

NASA and Korean Space Agency Discuss Space Cooperation

EARLY EARTH
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

EARLY EARTH
NSBRI Wants Ideas To Support Space Crew Health and Performance

NASA narrows list of possible culprits in spacesuit water leak

Unmanned Russian cargo craft lands in Pacific Ocean

Russian supply ship docks with orbiting space station

EARLY EARTH
SpaceX Awarded Launch Reservation Contract for Largest Canadian Space Program

ULA Continues Rapid, Reliable Launch Rate

Launch Vehicles for Achieving Low and High Orbits

The second satellite arrives for Arianespace's upcoming heavy-lift Ariane 5 launch

EARLY EARTH
Pulsating star sheds light on exoplanet

Chandra Sees Eclipsing Planet in X-rays for First Time

A warmer planetary haven around cool stars, as ice warms rather than cools

Solar system's youth gives clues to planet search

EARLY EARTH
Laser communication system for spacecraft in successful test

Make It Yourself and Save - a Lot - with 3D Printers

Lifelike cooling for sunbaked windows

Sony, Panasonic mulling 300-gigabyte Blu-ray format




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement