Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
'Nanomotor lithography' answers call for affordable, simpler device manufacturing
by Staff Writers
San Diego (SPX) Oct 31, 2014


Nanoengineers have invented a spherical nanorobot made of silica that focuses light like a near-field lens to write surface patterns for nanoscale devices. In this image, the red and purple areas indicate where the light is being magnified to produce a trench pattern on light-sensitive material. The researchers published their novel 'nanomotor lithography' method recently in the journal Nature Communications. Image courtesy Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering.

What does it take to fabricate electronic and medical devices tinier than a fraction of a human hair? Nanoengineers at the University of California, San Diego recently invented a new method of lithography in which nanoscale robots swim over the surface of light-sensitive material to create complex surface patterns that form the sensors and electronics components on nanoscale devices.

Their research, published recently in the journal Nature Communications, offers a simpler and more affordable alternative to the high cost and complexity of current state-of-the-art nanofabrication methods such as electron beam writing.

Led by distinguished nanoengineering professor and chair Joseph Wang, the team developed nanorobots, or nanomotors, that are chemically-powered, self-propelled and magnetically controlled.

Their proof-of-concept study demonstrates the first nanorobot swimmers able to manipulate light for nanoscale surface patterning. The new strategy combines controlled movement with unique light-focusing or light-blocking abilities of nanoscale robots.

"All we need is these self-propelled nanorobots and UV light," said Jinxing Li, a doctoral student at the Jacobs School of Engineering and first author. "They work together like minions, moving and writing and are easily controlled by a simple magnet."

State-of-art lithography methods such as electron beam writing are used to define extremely precise surface patterns on substrates used in the manufacture of microelectronics and medical devices. These patterns form the functioning sensors and electronic components such as transistors and switches packed on today's integrated circuits.

In the mid-20th century the discovery that electronic circuits could be patterned on a small silicon chip, instead of assembling independent components into a much larger "discrete circuit," revolutionized the electronics industry and set in motion device miniaturization on a scale previously unthinkable.

Today, as scientists invent devices and machines on the nanoscale, there is new interest in developing unconventional nanoscale manufacturing technologies for mass production.

Li was careful to point out that this nanomotor lithography method cannot completely replace the state-of-the-art resolution offered by an e-beam writer, for example.

However, the technology provides a framework for autonomous writing of nanopatterns at a fraction of the cost and difficulty of these more complex systems, which is useful for mass production. Wang's team also demonstrated that several nanorobots can work together to create parallel surface patterns, a task that e-beam writers cannot perform.

The team developed two types of nanorobots: a spherical nanorobot made of silica that focuses the light like a near-field lens, and a rod-shape nanorobot made of metal that blocks the light. Each is self-propelled by the catalytic decomposition of hydrogen peroxide fuel solution.

Two types of features are generated: trenches and ridges. When the photoresist surface is exposed to UV light, the spherical nanorobot harnesses and magnifies the light, moving along to create a trench pattern, while the rod-shape nanorobot blocks the light to build a ridge pattern.

"Like microorganisms, our nanorobots can precisely control their speed and spatial motion, and self-organize to achieve collective goals," said professor Joe Wang. His group's nanorobots offer great promise for diverse biomedical, environmental and security applications.

UC San Diego is investing heavily in robotics research while leveraging the partnership opportunities afforded by regional industry expertise in supporting fields such as defense and wireless technology, biotech and manufacturing. The Contextual Robotics Technologies International Forum was hosted by the Jacobs School of Engineering, the Qualcomm Institute and the Department of Cognitive Science.

Joe Wang is the director of the Center for Wearable Sensors at UC San Diego Jacobs School of Engineering and holds the SAIC endowed chair in engineering.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
UC San Diego
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
RF heating of magnetic nanoparticles improves thawing of cryopreserved biomaterials
Washington DC (SPX) Oct 27, 2014
Successful techniques for cryopreserving bulk biomaterials and organ systems would transform current approaches to transplantation and regenerative medicine. However, while vitrified cryopreservation holds great promise, practical application has been limited to smaller systems (cells and thin tissues) due to diffusive heat and mass transfer limitations, which are typically manifested as devitri ... read more


NANO TECH
NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

New lunar mission to test Chang'e-5 technology

Next Chinese mission to moon will return to Earth

China's ailing moon rover weakening

NANO TECH
You can't get to Mars, but your name can

A One Way Trip to Mars

Mars 2020 Will Continue Search for Habitability

NASA Seeks Ultra-lightweight Materials to Help Enable Journey to Mars

NANO TECH
Branson shocked as Virgin spaceship crash kills pilot

It's Anchors Aweigh on Modifications to NASA's Pegasus Barge

Virgin crash sets back space tourism by years: experts

Virgin spaceship crashes in US desert, one pilot dead

NANO TECH
China's First Lunar Return Mission A Stunning Success

China completes first mission to moon and back

Wenchang to launch China's next space station

China's Main Competitor in Space Exploration is India, Not Russia

NANO TECH
Student Experiments Lost in Antares Rocket Explosion

NASA to work with cargo partners despite rocket crash

Russian space station resupply rocket launches, docks at ISS

ISS Crew Has Enough Supplies Until March 2015

NANO TECH
NASA Completes Initial Assessment after Orbital Launch Mishap

FY 15 launch schedule kicks off with GPS IIF-8 liftoff from 'The Cape'

Arianespace signs contract with ELV for ten Vega launchers

Antares Rocket Crash in Virginia Investigation to Take up to Year

NANO TECH
Yale finds a planet that won't stick to a schedule

In a first, astronomers map comets around another star

Getting To Know Super-Earths

Astronomers Spot Faraway Uranus-Like Planet

NANO TECH
Reverse engineering materials for more efficient heating and cooling

Steering ESA satellites clear of space debris

NASA Team Proposes to Use Laser to Track Orbital Debris

Cutting power could dramatically boost laser output




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.