. 24/7 Space News .
INTERNET SPACE
Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
by Staff Writers
Pohang, South Korea (SPX) Apr 24, 2017


a) This is a multilayered spherical hyperlens structure. Metal and dielectric thin films are deposited on a spherical shape of substrate. b) This is a transmission electron microscopy (TEM) image of the cross-section of a replicated hyperlens c and d) Tilted view for the quartz master mold and the replicated substrate e) Scanning electron microscopy (SEM) image of the sub-diffraction scale objects. f) Far-field optical image after hyperlens. The small object below diffraction limit is clearly resolved by the hyperlens. Image courtesy POSTECH.

The concept of a perfect lens that can produce immaculate and flawless images has been the Holy Grail of lens makers for centuries. In 1873, a German physicist and optical scientist by the name of Ernst Abbe discovered the diffraction limit of the microscope. In other words, he discovered that conventional lenses are fundamentally incapable of capturing all the details of any given image. Since then, there have been numerous advances in the field to produce images that appear to have higher resolution than allowed by diffraction-limited optics.

In 2000, Professor Sir John B. Pendry of Imperial College London - the John Pendry who enticed millions of Harry Potter fans around the world with the possibility of a real Invisibility Cloak - suggested a method of creating a lens with a theoretically perfect focus.

The resolution of any optical imaging system has a maximum limit due to diffraction but Pendry's theoretic perfect lens would be crafted from metamaterials (materials engineered to have properties not found in nature) to go beyond the diffraction limit of conventional lenses. Overcoming this resolution limit of conventional optics could propel optical imaging science and technology into realms once only dreamt by common Muggles.

Scientists all over the world have since endeavored to achieve super-resolution imaging that capture the finest of details contained in evanescent waves that would otherwise be lost with conventional lenses. Hyperlenses are super-resolution devices that transform scattered evanescent waves into propagating waves to project the image into the far-field. Recent experiments that focus on a single hyperlens made from an anisotropic metamaterial with a hyperbolic dispersion have demonstrated far-field sub-diffraction imaging in real time.

However, such devices are limited by an extremely small observation area which consequently require precise positioning of the subject. A hyperlens array has been considered to be a solution, but fabrication of such an array would be extremely difficult and prohibitively expensive with existing nanofabrication technologies.

Research conducted by Professor Junsuk Rho's team from the Department of Mechanical Engineering and the Department of Chemical Engineering at Pohang University of Science and Technology in collaboration with research team from Korea University has made great contributions to overcoming this obstacle by demonstrating a scalable and reliable fabrication process of a large scale hyperlens device based on direct pattern transfer techniques. This achievement has been published in the world-renowned Scientific Reports.

The team solved the main limitations of previous fabrication methods of hyperlens devices through nanoimprint lithography. Based on a simple pattern transfer process, the team was able to readily fabricate a perfect large-scale hyperlens device on a replicated hexagonal array of hemisphere substrate directly printed and pattern-transferred from the master mold, followed by metal-dielectric multilayer deposition by electron beam evaporation. This 5 cm x 5 cm hyperlens array has been demonstrated to resolve sub-diffraction features down to 160 nm under a 410 nm wavelength visible light.

Professor Rho anticipates that the research team's new cost-effective fabrication method can be used to proliferate practical far-field and real-time super-resolution imaging devices that can be widely used in optics, biology, medical science, nanotechnology, and other related interdisciplinary fields.

INTERNET SPACE
New microscopy method breaks color barrier of optical imaging
New York NY (SPX) Apr 20, 2017
Researchers at Columbia University have made a significant step toward breaking the so-called "color barrier" of light microscopy for biological systems, allowing for much more comprehensive, system-wide labeling and imaging of a greater number of biomolecules in living cells and tissues than is currently attainable. The advancement has the potential for many future applications, including helpi ... read more

Related Links
Pohang University of Science and Technology
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
Lunar, Martian Greenhouses Designed to Mimic Those on Earth

NASA spacesuits over budget, tight on timeline: audit

Astronaut Airman launched to International Space Station

'Better you than me,' Trump tells record-breaking astronaut

INTERNET SPACE
New Russian Medium-Class Carrier Rocket Could Compete With SpaceX's Falcon

RSC Energia, Boeing Hammer Out a Deal on Sea Launch Project

India seeks status as a major space power with more satellite launches

India to Launch Carrier Rocket With Higher Payload Capacity in May

INTERNET SPACE
How Old are Martian Gullies

SwRI-led team discovers lull in Mars' giant impact history

Opportunity Nears 'Perseverance Valley'

Engineers investigate simple, no-bake recipe to make bricks on Mars

INTERNET SPACE
China courts international coalition set up to promote space cooperation

Commentary: Innovation drives China's space exploration

Macao marks 2nd China Space Day with astronaut sharing space experience

China's Long March-5 Y2 carrier rocket leaves for launch site

INTERNET SPACE
ESA boosting its Argentine link with deep space

Arianespace, Intelsat and SKY Perfect JSAT sign a new Launch Services Agreement, for Horizons 3e

Airbus and Intelsat team up for more capacity

Commercial Space Operators To Canada: "We're Here, and We can Help"

INTERNET SPACE
Man-Made Space Junk Puts Astronauts, Operational Spacecraft in Serious Danger

Engineering technique is damaging materials research reveals

Finding order and structure in the atomic chaos where materials meet

Changing the game

INTERNET SPACE
'Iceball' Planet Discovered Through Microlensing

What can we learn from dinosaur proteins

'On Verge of Most Profound Discovery Ever,' NASA Tells US Congress

Rocky super-earth found in habitable zone of small red star

INTERNET SPACE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.