. 24/7 Space News .
NANO TECH
Nano-walkers take speedy leap forward with first rolling DNA-based motor
by Staff Writers
Atlanta, GA (SPX) Dec 07, 2015


'Ours is the first rolling DNA motor, making it far faster and more robust,' says Khalid Salaita, the Emory University chemist who led he research. Image courtesy Bryan Meltz, Emory Photo/Video. For a larger version of this image please go here.

Physical chemists have devised a rolling DNA-based motor that's 1,000 times faster than any other synthetic DNA motor, giving it potential for real-world applications, such as disease diagnostics. Nature Nanotechnology is publishing the finding.

"Unlike other synthetic DNA-based motors, which use legs to 'walk' like tiny robots, ours is the first rolling DNA motor, making it far faster and more robust," says Khalid Salaita, the Emory University chemist who led the research. "It's like the biological equivalent of the invention of the wheel for the field of DNA machines."

The speed of the new DNA-based motor, which is powered by ribonuclease H, means a simple smart phone microscope can capture its motion through video. The researchers have filed an invention disclosure patent for the concept of using the particle motion of their rolling molecular motor as a sensor for everything from a single DNA mutation in a biological sample to heavy metals in water.

"Our method offers a way of doing low-cost, low-tech diagnostics in settings with limited resources," Salaita says.

The field of synthetic DNA-based motors, also known as nano-walkers, is about 15 years old. Researchers are striving to duplicate the action of nature's nano-walkers. Myosin, for example, are tiny biological mechanisms that "walk" on filaments to carry nutrients throughout the human body.

"It's the ultimate in science fiction," Salaita says of the quest to create tiny robots, or nano-bots, that could be programmed to do your bidding. "People have dreamed of sending in nano-bots to deliver drugs or to repair problems in the human body."

So far, however, mankind's efforts have fallen far short of nature's myosin, which speeds effortlessly about its biological errands. "The ability of myosin to convert chemical energy into mechanical energy is astounding," Salaita says. "They are the most efficient motors we know of today."

Some synthetic nano-walkers move on two legs. They are essentially enzymes made of DNA, powered by the catalyst RNA. These nano-walkers tend to be extremely unstable, due to the high levels of Brownian motion at the nano-scale. Other versions with four, and even six, legs have proved more stable, but much slower. In fact, their pace is glacial: A four-legged DNA-based motor would need about 20 years to move one centimeter.

Kevin Yehl, a post-doctoral fellow in the Salaita lab, had the idea of constructing a DNA-based motor using a micron-sized glass sphere. Hundreds of DNA strands, or "legs," are allowed to bind to the sphere. These DNA legs are placed on a glass slide coated with the reactant: RNA.

The DNA legs are drawn to the RNA, but as soon as they set foot on it they destroy it through the activity of an enzyme called RNase H. As the legs bind and then release from the substrate, they guide the sphere along, allowing more of the DNA legs to keep binding and pulling.

"It's called a burnt-bridge mechanism," Salaita explains. "Wherever the DNA legs step, they trample and destroy the reactant. They have to keep moving and step where they haven't stepped in order to find more reactant."

The combination of the rolling motion, and the speed of the RNase H enzyme on a substrate, gives the new DNA motor its stability and speed.

"Our DNA-based motor can travel one centimeter in seven days, instead of 20 years, making it 1,000 times faster than the older versions," Salaita says. "In fact, nature's myosin motors are only 10 times faster than ours, and it took them billions of years to evolve."

The researchers demonstrated that their rolling motors can be used to detect a single DNA mutation by measuring particle displacement. They simply glued lenses from two inexpensive laser pointers to the camera of a smart phone to turn the phone into a microscope and capture videos of the particle motion.

"Using a smart phone, we can get a readout for anything that's interfering with the enzyme-substrate reaction, because that will change the speed of the particle," Salaita says. "For instance, we can detect a single mutation in a DNA strand."

This simple, low-tech method could come in handy for doing diagnostic sensing of biological samples in the field, or anywhere with limited resources.

The proof that the motors roll came by accident, Salaita adds. During their experiments, two of the glass spheres occasionally became stuck together, or dimerized. Instead of making a wandering trail, they left a pair of straight, parallel tracks across the substrate, like a lawn mower cutting grass.

"It's the first example of a synthetic molecular motor that goes in a straight line without a track or a magnetic field to guide it," Salaita says.

In addition to Salaita and Yehl, the co-authors on the Nature Nanotechnology paper include Emory researchers Skanda Vivek, Yang Liu, Yun Zhang, Megzhen Fan, Eric Weeks and Andrew Mugler (who is now at Purdue University).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Emory Health Sciences
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Electric fields remove nanoparticles from blood with ease
San Diego CA (SPX) Dec 01, 2015
Engineers at the University of California, San Diego developed a new technology that uses an oscillating electric field to easily and quickly isolate drug-delivery nanoparticles from blood. The technology could serve as a general tool to separate and recover nanoparticles from other complex fluids for medical, environmental, and industrial applications. Nanoparticles, which are generally o ... read more


NANO TECH
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

NANO TECH
Letter to Mars? Royal Mail works it out for British boy, 5

European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

ExoMars prepares to leave Europe for launch site

NANO TECH
Orion's power system to be put to the test

The Ins and Outs of NASA's First Launch of SLS and Orion

Aerojet Rocketdyne tapped for spacecraft's crew module propulsion

Brits Aim for the Stars with Big Bucks on Offer to Conquer Final Frontier

NANO TECH
China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

NANO TECH
Getting Into the Flow on the ISS

Orbital to fly first space cargo mission since 2014 explosion

Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

NANO TECH
DXL-2: Studying X-ray emissions in space

Arianespace selected to launch Azerspace-2/Intelsat 38 satellites

"Cyg"-nificant Science Launching to Space Station

Flight teams prepare for LISA Pathfinder liftoff

NANO TECH
What kinds of stars form rocky planets

Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

Neptune-size exoplanet around a red dwarf star

NANO TECH
Conductor turned insulator amid disorder

World's tiniest temperature sensor can track movement from inside cement

Researchers discover mother of pearl production process

New 'self-healing' gel makes electronics more flexible









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.