Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
NIST tunes 'metasurface' with fluid in new concept for sensing and chemistry
by Staff Writers
Washington DC (SPX) Jun 13, 2011


NIST's fluid-tunable "metasurface" consists of copper structures and plastic tubing mounted on composite board. The presence of water in the tubing changes the resonant frequency at which the metasurface absorbs and stores energy. Credit: NIST

Like an opera singer hitting a note that shatters a glass, a signal at a particular resonant frequency can concentrate energy in a material and change its properties. And as with 18th century "musical glasses," adding a little water can change the critical pitch.

Echoing both phenomena, researchers at the National Institute of Standards and Technology (NIST) have demonstrated a unique fluid-tuned "metasurface," a concept that may be useful in biomedical sensors and microwave-assisted chemistry.

A metasurface or metafilm is a two-dimensional version of a metamaterial, popularized recently in technologies with seemingly unnatural properties, such as the illusion of invisibility. Metamaterials have special properties not found in nature, often because of a novel structure.

NIST's metasurface is a small piece of composite circuit board studded with metal patches in specific geometries and arrangements to create a structure that can reflect, store, or transmit energy (that is, allow it to pass right through).

As described in a new paper, NIST researchers used purified water to tune the metasurface's resonant frequency-the specific microwave frequency at which the surface can accumulate or store energy.

They also calculated that the metasurface could concentrate electric field strength in localized areas, and thus might be used to heat fluids and promote microwave-assisted chemical or biochemical reactions.

The metasurface's behavior is due to interactions of 18 square copper frame structures, each 10 millimeters on a side (see photo).

Computer simulations help design the copper squares to respond to a specific frequency. They are easily excited by microwaves, and each one can store energy in a T-shaped gap in its midsection when the metasurface is in a resonant condition. Fluid channels made of plastic tubing are bonded across the gaps.

The sample is placed in a waveguide, which directs the microwaves and acts like a kaleidoscope, with walls that serve as mirrors and create the electrical illusion that the metasurface extends to infinity.

Researchers tested the metasurface properties with and without purified water in the fluid channels. The presence of water shifted the resonant frequency from 3.75 to 3.60 gigahertz.

At other frequencies, the metasurface reflects or transmits energy. Researchers also calculated that the metasurface, when in the resonant condition, could concentrate energy in the gaps at least 100 times more than the waveguide alone.

Metasurface/fluid interactions might be useful in tunable surfaces, sensing and process monitoring linked to changes in fluid flow, and catalysis of chemical or biochemical reactions in fluid channels controlled by changes in microwave frequency and power as well as fluid flow rates.

NIST researchers are also looking into the possibility of making metamaterial chips or circuits to use for biomedical applications such as counting cells.

J. Gordon, C. Holloway, J.C. Booth, J.R. Baker-Jarvis, D. Novotny, S. Kim and Y. Wang. Fluid interactions with metafilm/metasurfaces for tuning, sensing, and microwave assisted chemical processes. Physical Review B 83, 205130 (2011). Posted online May 25, 2011.

.


Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
At the touch of a button new nano material switches properties as required
Hamburg, Germany (SPX) Jun 13, 2011
A world premiere: a material which changes its strength, virtually at the touch of a button. This transformation can be achieved in a matter of seconds through changes in the electron structure of a material; thus hard and brittle matter, for example, can become soft and malleable. What makes this development revolutionary, is that the transformation can be controlled by electric signals. ... read more


TECH SPACE
Blood Red Moon Predicted

NASA Releases New Lunar Eclipse Video

The Power of A Moon Rock

Looking at the volatile side of the Moon

TECH SPACE
Up, Up and Away for Mars

Opportunity Heads Toward 'Spirit Point'

NASA Inspector General Report into the Management of MSL Project

New solar system formation models indicate that Jupiter's foray robbed Mars of mass

TECH SPACE
Students Build Space Habitats at NASA's Johnson Space Center

Solar system edge 'bunches' in magnetic bubbles: NASA

NASA Spending Shift to Benefit Centers Focused on Science and Technology

Japan's next gizmo: brainwave-controlled cat ears

TECH SPACE
China's second moon orbiter Chang'e-2 goes to outer space

Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

Venezuela, China to launch satellite next year

TECH SPACE
Space station puts out welcome mat

New Crew Members Arrive at ISS

Soyuz docks at ISS carrying Russian, US, Japanese astronauts

Soyuz heads to ISS carrying Russian, US, Japanese astronauts

TECH SPACE
SES-3 Satellite Arrives At Baikonour Launch Base

Shipments Of Sea Launch Zenit-3Sl Hardware Resume On Schedule

US Army supports student launch program

Boeing Opens Exploration Launch Systems Office in Florida

TECH SPACE
Rage Against the Dying of the Light

Second Rocky World Makes Kepler-10 a Multi-Planet System

Kepler's Astounding Haul of Multiple-Planet Systems Just Keeps Growing

Bennett team discovers new class of extrasolar planets

TECH SPACE
At the touch of a button new nano material switches properties as required

A New Way To Make Lighter, Stronger Steel - In A Flash

NIST tunes 'metasurface' with fluid in new concept for sensing and chemistry

Northrop Grumman Space Program Completes Critical Review




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement