Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
NIST tests underscore potential hazards of green laser pointers
by Staff Writers
Washington DC (SPX) Mar 25, 2013


This image shows laser safety officer Joshua Hadler, NIST, and his apparatus for measuring the properties of handheld laser devices. Credit: Burrus/NIST.

Using a low-cost apparatus designed to quickly and accurately measure the properties of handheld laser devices, National Institute of Standards and Technology (NIST) researchers tested 122 laser pointers and found that nearly 90 percent of green pointers and about 44 percent of red pointers tested were out of compliance with federal safety regulations. The NIST test apparatus was designed so that it can be replicated easily by other institutions.

As NIST researchers reported at a conference on March 20, 2013,* both red and green laser pointers often emitted more visible power than allowed under the Code of Federal Regulations (CFR), and green pointers often emitted unacceptable levels of infrared light as well.

Anecdotal reports of green laser hazards have previously appeared in scientific journals and the media, but the new NIST tests are the first reported precision measurements of a large number of handheld laser devices. The NIST tests point out that many red laser pointers are also-unexpectedly-out of compliance with federal regulations. "Our results raise numerous safety questions regarding laser pointers and their use," the new paper states.

The NIST tests were conducted on randomly selected commercial laser devices labeled as Class IIIa or 3R and sold as suitable for demonstration use in classrooms and other public spaces. Such lasers are limited under the CFR to 5 milliwatts maximum emission in the visible portion of the spectrum and less than 2 milliwatts in the infrared portion of the spectrum. About half the devices tested emitted power levels at least twice the CFR limit at one or more wavelengths. The highest measured power output was 66.5 milliwatts, more than 10 times the legal limit. The power measurements were accurate to within 5 percent.

According to the American National Standards Institute (ANSI), laser devices that exceed 3R limits may be hazardous and should be subject to more rigorous controls such as training, to prevent injury.**

NIST is a non-regulatory agency with decades of experience providing industry, research and military agencies with laser power measurements traceable to international standards. NIST also has a history of innovation in devices for making such measurements. Technical staff from NIST's Laser Radiometry Project built the laser pointer test bed and collaborated with the NIST Office of Safety, Health and Environment on the tests. NIST has provided its data on laser pointer power measurements to the Food and Drug Administration, which regulates laser product safety.

Green lasers generate green light from infrared light. Ideally, the device should be designed and manufactured to confine the infrared light within the laser housing. However, according to the new NIST results, more than 75 percent of the devices tested emitted infrared light in excess of the CFR limit.

NIST Laser Safety Officer Joshua Hadler designed the measurement test bed.*** The system consists of a laser power meter and two optical filters to quantify the emissions of different wavelengths of visible and infrared light. The power meter and filters were calibrated at NIST. Lens holders ensure repeatable laser alignment, and an adjustable aperture contains the laser light around the output end of the laser.

"The measurement system is designed so that anyone can build it using off-the-shelf parts for about $2,000," Hadler says. "By relying on manufacturers' traceability to a national measurement institute such as NIST, someone could use this design to accurately measure power from a laser pointer."

J. Hadler. Random testing reveals excessive power in commercial laser pointers. Presentation at the International Laser Safety Conference, Orlando, Fla., March 20, 2013; J. Hadler, E.L. Tobares and M. Dowell. Random testing reveals excessive power in commercial laser pointers. Journal of Laser Applications. (Forthcoming.) American National Standard for the Safe Use of Lasers (ANSI Z136-2007) Section 1.2 and Table 1. Lasers that exceed 3R emissions limits are classified as 3B or 4. J. Hadler and M. Dowell. Accurate, inexpensive testing of laser pointer power for safe operation. Measurement Science and Technology. Published online March 7, 2013.

.


Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Breaking the final barrier: room-temperature electrically powered nanolasers
Tempe AZ (SPX) Mar 14, 2013
A breakthrough in nanolaser technology has been made by Arizona State University researchers. Electrically powered nano-scale lasers have been able to operate effectively only in cold temperatures. Researchers in the field have been striving to enable them to perform reliably at room temperature, a step that would pave the way for their use in a variety of practical applications. The resea ... read more


TECH SPACE
NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

TECH SPACE
Sun in the Way Will Affect Mars Missions in April

ChemCam data abundant at Planetary Conference

Los Alamos science sleuth on the trail of a Martian mystery

Curiosity Rover Exits 'Safe Mode'

TECH SPACE
Lockheed Martin to Continue Providing Life Sciences Support To NASA

U.S. Astronomers Call on Congress to Support R and D Investments

NASA Voyager Status Update on Voyager 1 Location

Voyager 1 has entered a new region of space

TECH SPACE
Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

Woman expected again to join next China crew roster

TECH SPACE
New Space Station Crew Members to Launch and Dock the Same Day

ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

Space crew returns to Earth from ISS

TECH SPACE
Dragon capsule to spend extra day in space

Sea Launch and EchoStar Reach Preliminary Agreement for Launch Services

Estonia's student cubesat satellite is ready for the next Vega launch

Vega receives its upper stage as the next mission's two primary passengers land in French Guiana

TECH SPACE
Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

The Great Exoplanet Debate

TECH SPACE
Record simulations conducted on Lawrence Livermore supercomputer

Breakthrough research shows chemical reaction in real time

Mainz scientists create new flexible mineral inspired by deep-sea sponges

NTU scientist develops a multi-purpose wonder material to tackle environmental challenges




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement