. 24/7 Space News .
STELLAR CHEMISTRY
NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
by Staff Writers
Washington DC (SPX) Nov 18, 2019

Artist's depiction of newly demonstrated nano-opto-electro-mechanical switches as they could be used for future filtering of colors for sensing or communications. In communications, the amount of transmitted information per channel can be increased by carrying data not only by one color but by multiple colors. Yet, the different color channels need to be routed on demand to different end-users. The image shows how this can be achieved on the scale of 1 millionth of a meter (1 micrometer) by using the switches. White light can contain, for example, blue light for voice messages, red for video, and green for text. All of those are filtered by the switches such that red, blue and green color channels are routed to different designated end-users. By applying tiny voltages researchers can swap colors on demand, controlling which data reaches which end-user.

Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have developed an optical switch that routes light from one computer chip to another in just 20 billionths of a second - faster than any other similar device. The compact switch is the first to operate at voltages low enough to be integrated onto low-cost silicon chips and redirects light with very low signal loss.

The switch's record-breaking performance is a major new step toward building a computer that uses light instead of electricity to process information. Relying on particles of light - photons - to transport data within a computer offers several advantages over electronic communications. Photons travel faster than electrons and don't waste energy by heating up the computer components. Managing that waste heat is a major barrier to improving computer performance. Light signals have been used for decades to transmit information over great distances using optical fibers, but the fibers take up too much room to be used to carry data across a computer chip.

The new switch combines nanometer-scale gold and silicon optical, electrical and mechanical components, all densely packed, to channel light into and out of a miniature racetrack, alter its speed, and change its direction of travel. (One nanometer is a billionth of a meter, or about one-hundred-thousandth the width of a human hair.) The NIST-led international team describes the device online in Science.

The device has myriad applications, notes study co-author Christian Haffner of NIST, ETH Zurich and the University of Maryland. In driverless cars, the switch could rapidly redirect a single light beam that must continually scan all parts of the roadway to measure the distance to other automobiles and pedestrians. The device could also make it easier to use more powerful light-based circuits instead of electricity-based ones in neural networks. These are artificial intelligence systems that simulate how neurons in the human brain make decisions about such complex tasks as pattern recognition and risk management.

The new technology also uses very little energy to redirect light signals. This feature may help realize the dream of quantum computing. A quantum computer processes data stored in the subtle interrelations between specially prepared pairs of subatomic particles. However, these relationships are extremely fragile, requiring that a computer operate at ultralow temperatures and low power so that the particle pairs are disturbed as little as possible. Because the new optical switch requires little energy - unlike previous optical switches - it could become an integral part of a quantum computer.

Haffner and his colleagues, who include Vladimir Aksyuk and Henri Lezec of NIST, say their findings may come as a surprise to many in the scientific community because the results contradict long-held beliefs. Some researchers have thought that opto-electro-mechanical switches would not be practical because they would be bulky, operate too slowly and require voltages too high for the components of a computer chip to tolerate.

The switch exploits the wave nature of light. When two identical light waves meet, they can superpose such that the crest of one wave aligns or reinforces the crest of the other, creating a bright pattern known as constructive interference. The two waves may also be exactly out of step, so that the valley of one wave cancels the crest of the other, resulting in a dark pattern - destructive interference.

In the team's setup, a light beam is confined to travel inside a miniature highway - a tube-shaped channel known as a waveguide. This linear highway is designed so that it has an off-ramp - some of the light can exit into a racetrack-shaped cavity, just a few nanometers away, etched into a silicon disk. If the light has just the right wavelength, it can whip around the racetrack many times before leaving the silicon cavity.

The switch has one other crucial component: a thin gold membrane suspended just a few tens of nanometers above the silicon disk. Some of the light traveling in the silicon racetrack leaks out and strikes the membrane, inducing groups of electrons on the membrane's surface to oscillate. These oscillations, known as plasmons, are a kind of hybrid between a light wave and an electron wave: The oscillating electrons resemble the incoming light wave in that they vibrate at the same frequency, but they have a much shorter wavelength.

The shorter wavelength lets researchers manipulate the plasmons over nanoscale distances, much shorter than the length of the original light wave, before converting the oscillations back into light. This, in turn, allows the optical switch to remain extremely compact.

By changing the width of the gap between the silicon disk and the gold membrane by only a few nanometers, the researchers could delay or advance the phase of the hybrid light wave - the point in time when the wave reaches a crest or valley. Even minuscule variations in the width of the gap, which the team accomplished by electrostatically bending the gold membrane, dramatically altered the phase.

Depending on how much the team had advanced or delayed the phase of the wave, when it recombined with light still traveling in the tube-shaped highway, the two beams interfered either constructively or destructively (see animation). If the light beams match up to interfere constructively, the light will continue in its original direction, traveling down the tube. But if the light beams interfere destructively, canceling each other out, that pathway is blocked. Instead, the light must move in another direction, determined by the orientation of other waveguides, or routes, placed close to the blocked pathway. In this way, the light can be switched at will to any of hundreds of other computer chips.

Scientists had once thought that a plasmonic system would greatly attenuate light signals because photons would penetrate the interior of the gold membrane, where electrons would absorb much of the light energy.

But the researchers have now proved that assumption wrong. The compactness of the device and a design that ensured that few photons would penetrate the membrane resulted in a loss of just 2.5% of the light signal, compared with 60% with previous switches. That puts the switch, although still a prototype, within reach of commercial applications.

The team is now working to make the device even smaller by shortening the distance between the silicon disk and the gold membrane. This would further reduce signal loss, making the technology even more appealing to industry.

Research Report: "Nano-opto-electro-mechanical switches operated at CMOS-level voltages"


Related Links
National Institute of Standards and Technology (NIST)
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Massive photons in an artificial magnetic field
Warsaw, Poland (SPX) Nov 15, 2019
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system - a thin optical cavity filled with liquid crystal - in which they trapped photons. As the properties of the cavity were modified by an external voltage, the photons behaved like massive quasiparticles endowed with a magnetic moment, called "spin", under the influence of an artificial magnetic field. The research has been published in Science on Friday, 8 November 2019. The world around us h ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Are we set to taste space wine

Cygnus NG-12 cargo vehicle looking good on arrival

Paragon wins $2M contract under NASA Tipping Point Program

Virgin Galactic's high-risk space adventure will likely pay off

STELLAR CHEMISTRY
Not your average rocket launch; 45th SW supports Pegasus ICON

ATLAS Space Operations partners with Aevum to support ASLON-45 Space Lift

All four engines are attached to the SLS Core Stage for Artemis I

Advanced electric propulsion thruster for NASA's Gateway achieves full power demonstration

STELLAR CHEMISTRY
The Mars Mole and the challenging ground of the Red Planet

Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

STELLAR CHEMISTRY
Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

STELLAR CHEMISTRY
European network of operations centres takes shape

D-Orbit signs contract with OneWeb in the frame of ESA project Sunrise

Space: a major legal void

SpaceX to launch 42,000 satellites

STELLAR CHEMISTRY
Artificial intelligence to run the chemical factories of the future

Asian-backed consortium wins massive iron ore deal in Guinea

Theoretical tubulanes inspire ultrahard polymers

Multimaterial 3D printing manufactures complex objects, fast

STELLAR CHEMISTRY
Study refines which exoplanets are potentially habitable

Life on Venus and the interplanetary transfer of biota from Earth

NASA instrument to probe planet clouds on European mission

The most spectacular celestial vision you'll never see

STELLAR CHEMISTRY
Juice cast in gold

SwRI to plan Pluto orbiter mission

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.