. 24/7 Space News .
CARBON WORLDS
NASA eyes highly versatile carbon-nanotube technology for different spaceflight applications
by Lori Keesey for GSFC News
Greenbelt MD (SPX) May 11, 2018

illustration only

An ultra-dark coating comprised of nearly invisible shag rug-like strands made of pure carbon is proving to be highly versatile for all types of spaceflight applications.

In the most recent application of the carbon-nanotube coating, optical engineer John Hagopian, a contractor at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and Goddard scientist Lucy Lim are growing an array of miniscule, button-shaped bumps of multi-walled nanotubes on a silicon wafer.

The dots, which measure only 100 microns in diameter - roughly the size of a human hair - would serve as the "ammunition" source for a mini-electron probe. This type of instrument analyzes the chemical properties of rocks and soil on airless bodies, like the Moon or an asteroid.

Although the probe is still early in its technology development, it's showing promise, said Lim, who is using funding from NASA's Planetary Instrument Concepts for the Advancement of Solar System Observations Program, better known as PICASSO, to advance the concept.

The Nanotech-Sized Electron Gun
Key to Lim's instrument, of course, are the carbon nanotubes, which are excellent electron emitters. Discovered in 1991, these structures also exhibit an array of useful electronic, magnetic and mechanical properties.

To create these highly versatile structures, technicians place a silicon wafer or some other substrate inside a furnace. As the oven heats, they bathe the substrate with a carbon feedstock gas to produce the thin coating of nearly invisible hair-like structures.

For the electron emitter, Hagopian and Lim are using this technique to grow tiny, circular dots of carbon nanotubes in a grid pattern that Goddard's detector branch fashioned using photolithography. Positioned above and below the lattice of dots are silicon wires or traces and a grid that produce two different voltages. These voltages create an electrical field that activates the release of electrons contained within the carbon-nanotube bumps or forests.

Under Lim's instrument concept, the electron beams would then pass through a stack of electrostatic lenses to accelerate their speed and help focus them on an extraterrestrial target. When the electrons hit the sample, the bombardment would excite the elements contained within the sample, producing X-rays that a spectrometer would then analyze to identify the sample's chemical make-up.

Significant Improvements Expected
Although NASA has flown other instruments that analyze samples using X-rays, Lim's concept and her use of carbon nanotubes could offer significant improvements.

What's different about her carbon nanotube-based electron field emitter is its small size and the fact that it's fully addressable. "We would be able to choose which bump to activate," Lim said. "We would be able to analyze different spots on the sample individually."

In contrast, if the instrument had only one electron source, it could only analyze one portion of the sample, Lim said. "We want to obtain compositional maps," she added. "Without the addressable emitter, we might not discover all the minerals contained within a sample, how big they are, or their relationship to each other."

In testing, Lim has demonstrated that the bumps emit enough electrons to excite a sample. Furthermore, Hagopian, who flew a couple coating samples on the International Space Station in 2014, has proven the technology can survive an excursion into outer space.

The team, which also includes Larry Hess with Goddard's Detector Branch, is closing in on the technical challenges and knows the nanotechnology works as envisioned. However, obstacles remain, said Hagopian, the founder of the Lanham, Maryland-based Advanced Nanophotonics. Packaging the nanotube-based grid into a tiny package and then hooking it up to the instrument's electronics "is difficult," Hagopian said. However, the team believes it can demonstrate the nanotube-based electron probe within a couple years under the NASA-funded research effort.

Straylight Suppression
In a completely different application and one that perhaps is better known, Hagopian is developing coatings to absorb straylight that can ricochet off instrument components and ultimately contaminate measurements.

In testing, carbon-nanotube coatings have proven highly effective at absorbing 99.8 percent of the light that strikes them and is the reason why they appear very black. When light penetrates the nanotube forest, tiny gaps between the tubes prevent the light from bouncing. However, these gaps don't absorb the light. The light's electric field excites electrons in the carbon nanotubes, turning light to heat and effectively absorbing it, Hagopian said.

For researchers at the Space Telescope Science Institute in Baltimore, Maryland, Hagopian is growing intricately patterned nanotubes onto a component that changes the pattern of light that has diffracted off the edges of telescope structures using coronagraphic masks, which block starlight, Hagopian said. NASA's Small Business Innovative Research program has funded the effort.

He also is collaborating with Principal Investigator Antonio Mannino to create a coating that would prevent straylight from contaminating measurements gathered by a new instrument called the Coastal Ocean Ecosystem Dynamics Imager, or COEDI. This hyperspectral spectrometer is being designed to monitor ocean color from geostationary orbit - measurements that scientists and others could use to assess and manage coastal resources.

"I started working with John [Hagopian] two years ago when I discovered in testing that straylight was going to be a problem with COEDI," said Mannino, who is developing his instrument also with NASA R and D funding. "We asked him to help us with the problem. I think he's close to solving it."

For more Goddard technology news, visit here


Related Links
Technology at NASA
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Scientists make strong, super-tough carbon sheets at low temperature
Dallas TX (SPX) May 10, 2018
An international research team led by scientists at Beihang University in China and The University of Texas at Dallas has developed high-strength, super-tough sheets of carbon that can be inexpensively fabricated at low temperatures. The team made the sheets by chemically stitching together platelets of graphitic carbon, which is similar to the graphite found in the soft lead of an ordinary pencil. The fabrication process resulted in a material whose mechanical properties exceed those of carbon fi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Russia Offers Space Tourist Flight to US, European Astronauts, UAE Citizen

Spinning science: multi-use variable-g platform arrives at the Space Station

Tourism nearly a tenth of global CO2 emissions

For how long will the USA remain the Nobel Prize leader?

CARBON WORLDS
TDM Bridge Builder: Daniel Herman, Solar Electric Propulsion System Lead

Reduce, Reuse, Rockets?

SpaceX's Dragon cargo ship returns to Earth

Return of SpaceX cargo ship delayed by rough seas

CARBON WORLDS
Mars growth stunted by early giant planetary instability

NASA blasts off Mars-bound spaceship, InSight, to study quakes

InSight probe to survey Mars for secrets inside the planet

One scientist's 30-year quest to get under Mars' skin

CARBON WORLDS
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

CARBON WORLDS
ESA selects three new mission concepts for study

Australian Space Agency Lost In Canberra

China's communication satellites occupy niche in world market

In crowded field, Iraq election hopefuls vie to stand out

CARBON WORLDS
China rejects US military claims of laser attacks on pilots

DARPA taps MIT for research on high-value molecules

Atomically thin magnetic device could lead to new memory technologies

Improving 3-D printing of plastic parts

CARBON WORLDS
Atmospheric seasons could signal alien life

An Exoplanet Atmosphere Free of Clouds

Dutch astronomers photograph possible toddler planet by chance

The Cheops ccience instrument arrives in Madrid

CARBON WORLDS
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.