Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



SPACE TRAVEL
NASA begins testing of revolutionary e-sail technology
by Staff Writers
Huntsville AL (SPX) Apr 13, 2016


In this concept, long, very thin, bare wires construct the large, circular E-Sail that would electrostatically repel the fast moving solar protons. The momentum exchange produced as the protons are repelled by the positively charged wires would create the spacecraft's thrust. Image courtesy NASA/MSFC. For a larger version of this image please go here. Watch a video on the research here.

Testing has started at NASA's Marshall Space Flight Center in Huntsville, Alabama, on a concept for a potentially revolutionary propulsion system that could send spacecraft to the edge of our solar system, the heliopause, faster than ever before.

The test results will provide modeling data for the Heliopause Electrostatic Rapid Transit System (HERTS). The proposed HERTS E-Sail concept, a propellant-less propulsion system, would harness solar wind to travel into interstellar space.

"The sun releases protons and electrons into the solar wind at very high speeds - 400 to 750 kilometers per second," said Bruce Wiegmann an engineer in Marshall's Advanced Concepts Office and the principal investigator for the HERTS E-Sail. "The E-Sail would use these protons to propel the spacecraft."

Extending outward from the center of the spacecraft, 10 to 20 electrically charged, bare aluminum wires would produce a large, circular E-Sail that would electrostatically repel the fast moving protons of the solar wind. The momentum exchange produced as the protons are repelled by the positively charged wires would create the spacecraft's thrust.

Each tether is extremely thin, only 1 millimeter - the width of a standard paperclip - and very long, nearly 12 and a half miles - almost 219 football fields. As the spacecraft slowly rotates at one revolution per hour, centrifugal forces will stretch the tethers into position.

The testing, which is taking place in the High Intensity Solar Environment Test system, is designed to examine the rate of proton and electron collisions with a positively charged wire.

Within a controlled plasma chamber simulating plasma in a space, the team is using a stainless steel wire as an analog for the lightweight aluminum wire. Though denser than aluminum, stainless steel's non-corrosive properties will mimic that of aluminum in space and allow more testing with no degradation.

Engineers are measuring deflections of protons from the energized charged wire within the chamber to improve modeling data that will be scaled up and applied to future development of E-Sail technology. The tests are also measuring the amount of electrons attracted to the wire.

This information will be used to develop the specifications for the required electron gun, or an electron emitter, that will expel excess electrons from the spacecraft to maintain the wire's positive voltage bias, which is critical to its operation as a propulsion system.

This concept builds upon the electric sail invention of Dr. Pekka Janhunen of the Finnish Meteorological Institute, and the current technologies required for an E-Sail integrated propulsion system are at a low technology readiness level.

If the results from plasma testing, modeling, and wire deployer investigations prove promising after the current two-year investigation, there is still a great deal of work necessary to design and build this new type of propulsion system. The earliest actual use of the technology is probably at least a decade away.

The HERTS E-Sail concept is being studied in response to the National Academy of Science's 2012 Heliophysics Decadal Survey, a study conducted by experts from NASA, industry, academia and government agencies, that identified advanced propulsion as the main technical hurdle for future exploration of the heliosphere. The survey, which offered the agency a road map of the heliophysics community's priorities for 2013-2022, highlighted the need for propulsion systems that could reach the edge of our solar system significantly faster than in the past.

To send a scientific probe on a deep space journey, the sail would have to have a large effective area. Space travel is generally measured in astronomical units, or the distance from Earth to the sun. At 1 AU, the E-Sail would have an effective area of about 232 square miles, slightly smaller than the city of Chicago. The effective area would increase to more than 463 square miles - similar to Los Angeles - at 5 AU.

This increase in area would lead to continued acceleration much longer than comparable propulsion technologies. For example, when solar sail spacecraft reach the asteroid belt at 5 AU, the energy of the solar photons dissipates and acceleration stops. Wiegmann believes the E-Sail would continue to accelerate well beyond that.

"The same concerns don't apply to the protons in the solar wind," he said. "With the continuous flow of protons, and the increased area, the E-Sail will continue to accelerate to 16-20 AU - at least three times farther than the solar sail. This will create much higher speeds."

In 2012, NASA's Voyager 1 became the first spacecraft to ever cross the heliopause and reach interstellar space. Launched in 1977, Voyager 1 took almost 35 years to make its 121 AU journey. The goal of HERTS is to develop an E-Sail that could make the same journey in less than one-third that time.

"Our investigation has shown that an interstellar probe mission propelled by an E-Sail could travel to the heliopause in just under 10 years," he said. "This could revolutionize the scientific returns of these types of missions."

The HERTS E-Sail concept development and testing is funded by NASA's Space Technology Mission Directorate through the NASA Innovative Advanced Concepts Program, which encourages visionary ideas that could transform future missions with the creation of radically better or entirely new aerospace concepts. NIAC projects study innovative, technically credible, advanced concepts that could one day "change the possible" in aerospace.

Selected as a Phase II NIAC Fellow in 2015, the HERTS team was awarded an additional $500,000 to further test the E-Sail and possibly change not only the way NASA travels to the heliopause, but also within our solar system.

"As the team studied this concept, it became clear that the design is flexible and adaptable," said Wiegmann. "Mission and vehicle designers can trade off wire length, number of wires and voltage levels to fit their needs - inner planetary, outer planetary or heliopause. The E-Sail is very scalable."

Steering can be accomplished by modulating the wire's voltage individually as the spacecraft rotates. Affecting a difference in force applied on different portions of the E-Sail, would give engineers the ability to steer the spacecraft, similar to the sails of a boat.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Heliopause Electrostatic Rapid Transit System
Space Tourism, Space Transport and Space Exploration News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE TRAVEL
NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout
Washington DC (SPX) Feb 09, 2016
Progress continues on the journey to Mars as NASA plans to send astronauts deeper into space than ever before, including to an asteroid and ultimately to the surface of Mars. Before humans embark on the journey, the agency will survey an asteroid to learn about the risks and challenges asteroids may pose to future human explorers. One way NASA will do this is by performing a reconnaissance ... read more


SPACE TRAVEL
Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

SPACE TRAVEL
Help keep heat on Mars Express through data mining

Ancient Mars bombardment likely enhanced life-supporting habitat

Opportunity's Devilish View from on High

Mars Longevity Champion Launched 15 Years Ago

SPACE TRAVEL
Spanish port becomes global 'smart city' laboratory

Silicon Beach: LA tech hub where the sun always shines

New DNA/RNA Tool to Diagnose, Treat Diseases

ASU to develop the next generation science education courseware for NASA

SPACE TRAVEL
Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

SPACE TRAVEL
Dragon and Cygnus To Meet For First Time In Space

Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

SPACE TRAVEL
SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

Orbital ATK receives NASA order for rockets

NASA Progresses Toward SpaceX Resupply Mission to Space Station

SPACE TRAVEL
Cooked planets shrink due to radiation

More accurately measuring distances between planetary nebulae and Earth

New tool refines exoplanet search

Stars strip away atmospheres of nearby super-Earths

SPACE TRAVEL
GenDyn completes Space Fence radar array structure

'Self-healing' plastic could mean better bandages, tougher phone cases

Ruthenium nanoframes open the doors to better catalysts

Artificial molecules




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement