Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
NASA Test Materials to Fly on Air Force Space Plane
by Staff Writers
Washington DC (SPX) May 07, 2015


File image.

Building on more than a decade of data from International Space Station (ISS) research, NASA is expanding its materials science research by flying an experiment on the U.S. Air Force X-37B space plane.

By flying the Materials Exposure and Technology Innovation in Space (METIS) investigation on the X-37B, materials scientists have the opportunity to expose almost 100 different materials samples to the space environment for more than 200 days. METIS is building on data acquired during the Materials on International Space Station Experiment (MISSE), which flew more than 4,000 samples in space from 2001 to 2013.

"By exposing materials to space and returning the samples to Earth, we gain valuable data about how the materials hold up in the environment in which they will have to operate," said Miria Finckenor, the co-investigator on the MISSE experiment and principal investigator for METIS at NASA's Marshall Space Flight Center in Huntsville, Alabama.

"Spacecraft designers can use this information to choose the best material for specific applications, such as thermal protection or antennas or any other space hardware."

The International Space Station is a unique orbiting laboratory used to conduct hundreds of investigations each year, with half of the research resources designated as a U.S. National Laboratory for investigations selected through the Center for the Advancement of Science in Space (CASIS) to provide direct benefits to people living on Earth.

NASA research focuses on advancing scientific knowledge and demonstrating technologies to enable human exploration into deep space through investigations such as the current one-year mission with NASA astronaut Scott Kelly.

It is difficult to simulate all the aspects of the space environment, so testing materials for extended durations is particularly important. Programs across the aerospace industry, including NASA's Mars Curiosity rover, the James Webb Space Telescope, and SpaceX's Dragon spacecraft have improved performance by selecting materials tested on the space station.

All of the data from the MISSE investigations are available in the Materials and Processes Technical Information System, where the METIS data also will be made available.

Researchers are flying some materials as part of METIS that also were tested during MISSE. Testing the same types of materials again can help scientists verify results obtained on the orbital outpost. If researchers see different results between the same type of materials used on both METIS and MISSE, it would help scientists learn about the differences experienced in various orbital environments.

"When we flew newly developed static-dissipative coatings on MISSE-2, we did not know they would be used for both the Curiosity rover and the SpaceX Dragon," said Finckenor. "Some program we don't know about now will be successful because engineers found the data they needed."

The METIS experiment complements the station research, looking at a variety of materials of interest for use on spacecraft built by NASA, industry, and other government agencies. The materials flown in space are potential candidates to replace obsolescent materials with environmentally-friendly options.

Finckenor leads a diverse team of investigators from other NASA centers, aerospace companies, and universities. For both MISSE and METIS, the customers supply small quarter-size samples. METIS will fly a variety of materials including polymers, composites, and coatings. Finckenor prepares the samples for flight and helps with post-flight sample analysis.

"Data from the space station and METIS materials experiments will improve the lifetime and operations of future spacecraft needed for NASA's journey to Mars," said Lisa Watson-Morgan, Marshall's chief engineer.

Marshall provided the hardware for the experiment, while the Air Force is providing NASA the opportunity to fly the experiment. The flight provides researchers an opportunity to collect additional data in advance of the next MISSE experiment aboard the space station in a couple of years.

The Air Force operates the unpiloted, robotically controlled and reusable X-37B space plane to test technology during long-duration missions. It has completed three missions launching from Cape Canaveral Air Force Station in Florida and landing at Vandenberg Air Force Base in California, with the last mission ending in October 2014 after 674 days in orbit. It takes off vertically, lands horizontally, and continues to further industrial advancement for reusable space test vehicles.

Data in the Materials and Processes Technical Information System are available to U.S. citizens, who can apply for an account here


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
MISSE experiments at NASA
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
The microscopic topography of ink on paper
Washington DC (SPX) May 05, 2015
A team of Finnish scientists has found a new way to examine the ancient art of putting ink to paper in unprecedented 3-D detail. The technique could improve scientists' understanding of how ink sticks to paper and ultimately lead to higher quality, less expensive and more environmentally-friendly printed products. Using modern X-ray and laser-based technologies, the researchers created a n ... read more


TECH SPACE
Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

TECH SPACE
Traffic Around Mars Gets Busy

Rock Spire in 'Spirit of St. Louis Crater' on Mars

Rover on the Lookout for Dust Devils

UAE opens space center to oversee mission to Mars

TECH SPACE
The language of invention: Most innovations are rephrasings of the past

NASA Confirms Electromagnetic Drive Produces Thrust in Vacuum

NASA pushes back against proposal to slash climate budget

Hawaii Says 'Aloha' to NASA's Low-Density Supersonic Decelerator

TECH SPACE
Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

TECH SPACE
Progress Incident Not Threatening Orbital Station, Work of Crew

Russia loses control of unmanned spacecraft

Japanese astronaut to arrive in ISS in May

Liquid crystal bubbles experiment arrives at International Space Station

TECH SPACE
ILS And Dauria announce Proton/Angara dual launch services agreement

SpaceX to test 'eject-button' for astronauts

India to launch 6 more satellites in 2015-16

Arianespace to launch HellaSat-4/SGS-1 for Arabsat and KACST

TECH SPACE
New exoplanet too big for its star

Robotically discovering Earth's nearest neighbors

Astronomers join forces to speed discovery of habitable worlds

Titan's Atmosphere Useful In Study Of Hazy Exoplanets

TECH SPACE
Real stereotypes continue to exist in virtual worlds

Researchers match physical and virtual atomic friction experiments

See flower cells in 3-D - no electron microscopy required

Northwestern scientists develop first liquid nanolaser




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.