Subscribe free to our newsletters via your
. 24/7 Space News .




BLUE SKY
NASA Sounding Rocket Will Provide Clues To Electric Currents In Atmosphere
by Karen C. Fox for Goddard Space Flight Center
Huntsville AL (SPX) Jun 24, 2013


An electric current called the dynamo, illustrated here, sweeps through Earth's upper atmosphere. A sounding rocket called Dynamo will launch in the summer of 2013 to study the current, which can disrupt Earth's communication and navigation signals. Credit: USGS.

Swirling through Earth's upper atmosphere is a layer of charged particles called the ionosphere. Constantly on the move, currents through the ionosphere can be much more complicated than winds at lower altitudes, because the currents vary in concert with magnetic fields around Earth and solar activity.

The ionosphere stretches from about 30 to 600 miles above Earth, and it plays a crucial role in our day-to-day lives because radio waves bounce off it as they travel from sender to receiver. Communications and navigation signals from satellites travel through it as well. A disrupted ionosphere equates to disrupted signals.

Scientists are gearing up to launch a sounding rocket from NASA's Wallops Flight Facility, Wallops Island, Va. for a five-minute trip to study a global, electrical current called the dynamo sweeping through the ionosphere. The sounding rocket is also called Dynamo. The window for launch is June 24 to July 8, 2013 (excepting June 26 and 27).

"The dynamo further south at the magnetic equator is particularly strong and is called the equatorial electrojet," said Robert Pfaff, the principle investigator for the Dynamo sounding rocket at NASA's Goddard Space Flight Center in Greenbelt, Md. "The mid-latitude dynamo is less understood and is actually more complex, since here Earth's magnetic field is at an angle."

The Dynamo mission, a joint project between NASA and the Japan Aerospace Exploration Agency, or JAXA, consists of two rockets that will launch 15 seconds apart during a window that lasts between 9:30 a.m. and 11:30 p.m. EDT. Each sounding rocket will go for a five-minute flight to some 100 miles up in the ionosphere.

The larger rocket is a Black Brant V, which is 35 feet long, carrying a payload of 600 pounds. This rocket will collect information about the neutral and charged particles through which it travels. The second rocket is a Terrier-Improved Orion, and is 33 feet long. It will shoot out a long trail of lithium gas to track how the upper atmospheric wind varies with altitude. These winds are believed to be the drivers of the dynamo currents.

Studying the winds during the daytime is not easy because the wind tracer normally used by sounding rockets is only visible at night. As a result, scientists at JAXA and Clemson University in Clemson, S.C., have jointly developed technology that uses lithium trails as a tracer, which is visible during the day using cameras with special filters. The Dynamo experiment will use a NASA airplane to gather data above the haze and clouds in order to record how the lithium, and hence the wind, moves.

Understanding what influences the movement of both the neutral and charged particles in the upper atmosphere is crucial to understanding the dynamo, as both affect the currents.

"The simple picture of the dynamo involves two giant circles of current - one in the northern hemisphere and one in the south," said Doug Rowland, a co-investigator for Dynamo at Goddard.

"At its most basic, the electric current is caused simply because the sun heats the upper atmosphere during the day causing the gas to rise up, which in turn causes movement, a wind. The neutral wind pushes the heavier charged particles and that drives an electric current. So both the neutral and the charged material must be understood."

Such a simple picture is not a complete picture, of course, and sounding rockets such as Dynamo are needed to not only reveal how these fundamental currents are set up, but also how a host of other occurrences around Earth impact the dynamo.

For example, activity on the sun can affect Earth's magnetic fields sometimes causing severe variation in the ionosphere. Additionally, the lower parts of the ionosphere contain different types of ions, which collide with the neutral gases in different ways, depending on their size.

Some of these effects have been studied before in the mid-latitudes, but in this region no one has studied the electromagnetic effects at the same time as they've studied the neutral winds.

Not only will understanding the dynamics of the ionosphere currents help to understand how -- and perhaps even predict when -- the ionosphere can disturb radio signals, it can shed light on similar processes believe to occur on other planets throughout the solar system.

"The manner in which neutral and ionized gases interact is a fundamental part of nature," said Pfaff. "There could very well be a dynamo on other planets. Jupiter, Saturn, Uranus and Neptune are all huge planets with huge atmospheres and huge magnetic fields. They could be setting up dynamo currents galore."

While sounding rockets make short trips, they provide access to critical areas of the upper atmosphere that are too low for orbiting satellites. Wallops Flight Facility, which manages NASA's sounding rocket program, is where the payloads are designed, built and tested.

.


Related Links
NASA's sounding rocket missions
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BLUE SKY
NASA's 2013 HS3 Hurricane Mission to Delve into Saharan Dust
Greenbelt MD (SPX) Jun 19, 2013
NASA's 2013 Hurricane and Severe Storms Sentinel or HS3 mission will investigate whether Saharan dust and its associated warm and dry air, known as the Saharan Air Layer or SAL, favors or suppresses the development of tropical cyclones in the Atlantic Ocean. The effects of Saharan dust on tropical cyclones is a controversial area of science. During the 2012 campaign, NASA's Global Hawk unmanned ... read more


BLUE SKY
Scientists use gravity, topographic data to find unmapped moon craters

Australian team maps Moon's hidden craters

LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

BLUE SKY
Billion-Pixel View of Mars Comes From Curiosity Rover

Study: Mars may have had ancient oxygen-rich atmosphere

Opportunity Recovers From Another Flash-Related Reset

ExoMars 2016 Set To Complete Construction

BLUE SKY
NASA Bill Would 'End Reliance on Russia,' Nix Asteroid Capture Project

Britain shut down UFO desk after finding no threat: files

New Zealand emerges as guinea pig for global tech firms

NASA announces eight new astronauts, half are women

BLUE SKY
Chinese astronauts manually dock spacecraft

China astronaut teaches lesson from space

China's space program less costly

China seeks to boost share of satellite market

BLUE SKY
Accelerating ISS Science With Upgraded Payload Operations Integration Center

Strange Flames on the ISS

Europe's space truck docks with ISS

Russian cargo supply craft separates from International Space Station

BLUE SKY
Four O3b Network birds integrated to Arianespace Soyuz launcher

Arianespace will retain its market leadership by building on the company's flexibility and agility

Plan for modified European rocket gets backing

Peru launches first homemade rocket

BLUE SKY
NASA's Hubble Uncovers Evidence of Farthest Planet Forming From its Star

Exoplanet formation surprise

Sunny Super-Earth?

Kepler Stars and Planets are Bigger than Previously Thought

BLUE SKY
Noble gases hitch a ride on hydrous minerals

'Chemical architects' build materials with potential applications in drug delivery and gas storage

Researchers Propose New Method for Achieving Nonlinear Optical Effects

Unexpected behavior of well-known catalysts




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement