Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
NASA Selects Loral Platform to Help Enable Next Era of Space Communications
by Staff Writers
Palo Alto, CA (SPX) Apr 11, 2012


The Space Systems/Loral platform is particularly well-suited to hosted payloads because of its size and high power capability and SS/L has many years of success in integrating government payloads onto commercial spacecraft. The company built Intelsat-14, which hosted the first commercial Internet Router in Space (IRIS) and was successfully launched in 2009.

Space Systems/Loral is teaming with NASA's Goddard Space Flight Center to host a laser communications relay demonstration (LCRD) on a commercial satellite to be launched in 2016. NASA 's Space Technology Program selected Goddard's mission proposal to use the SS/L satellite platform to help enable the next era of space communications.

Optical communications use an uncongested portion of spectrum compared to the radio frequency (RF) communications currently used to transmit data from space. Additionally, laser communications (lasercom) has the potential to provide order of magnitude higher data rates than RF, providing the potential to enable access to much more of the vast amounts of data that are being gathered from distant planets, including images and video.

For commercial satellites, lasercom could provide data at rates that are faster than today's RF rates, with much less mass and power, which are the typical constraints on satellite design.

"We are excited to be a part of this mission, which is particularly interesting because of the great potential for laser communications to revolutionize space exploration as well as the commercial satellite industry," said John Celli, president of Space Systems/Loral.

Space Systems/Loral is working with NASA Goddard's LCRD team to determine the technical requirements for the instruments to be integrated with the SS/L 1300 satellite platform. As the optical modules and ground stations are in development, SS/L will work with its commercial customers to identify an appropriate host satellite for the demonstration.

"The Space Systems/Loral platform provides NASA with the opportunity to demonstrate new technology on an operational satellite," said Michael Weiss, Project Manager, at the Goddard Space Flight Center.

"Once proven, the technology that we are demonstrating will revolutionize future communication systems. The use of optical communication technologies in a network environment will meet the growing needs of high data rate user demands while also enabling lower mass and power for space and ground communication systems."

The Space Systems/Loral platform is particularly well-suited to hosted payloads because of its size and high power capability and SS/L has many years of success in integrating government payloads onto commercial spacecraft. The company built Intelsat-14, which hosted the first commercial Internet Router in Space (IRIS) and was successfully launched in 2009.

SS/L also built Optus-C1 for Singtel Optus, which was launched in 2003. Optus-C1 provides commercial communications services in Australia and also hosts a UHF payload for the Australian Defense Force. SS/L also integrated a navigation payload for the European Union onto SES-5, which is scheduled to launch later this year.

"We are fortunate to have this opportunity to collaborate with the visionaries on the Goddard Space Flight Center team," said Al Tadros, Vice President, Government and Civil Missions at Space Systems/Loral.

"By selecting this project, NASA's Space Technology Program is not only investigating next generation technologies, but it is taking the lead in leveraging the benefit of commercial satellites for faster and less costly access to space. We applaud NASA for being proactive in the face of austere budgets to ensure continued science and technology advances."

Lasercom, which is also known as free-space optical communications, operates in the mid-wave infrared band of the electromagnetic spectrum, around 200 Terahertz (THz). This un-regulated and un-licensed part of the spectrum, which is eye safe, is four orders of magnitude higher than the radio propagation bands used today for satellite and other wireless communications, which are approximately 20 Gigahertz (GHz).

The corresponding increase in bandwidth effectively eliminates spectrum as a constraint for all applications, including the highest resolution imagery payloads and scientific sensors.

The lasercom spectrum is lightly used; however, due to its very narrow beam widths compared to RF, even if it were heavily used, multi-user interference is not a limiting capacity factor. Compared to high bandwidth RF links, lasercom terminals are approximately one order of magnitude lower in size, weight and power consumption, and are therefore suitable as hosted payloads over a broad range of satellites and spacecraft.

.


Related Links
Space Systems/Loral
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Astrium completes in-orbit delivery of the SSOT satellite system
Paris, France (SPX) Mar 30, 2012
Astrium's teams have successfully completed the in-orbit delivery of the SSOT satellite system, which launched from the European spaceport in French Guiana on 16 December 2011. In accepting delivery, the Chilean Air Force (FACh) confirmed that the conditions for the handover of the satellite, FASat Charlie, have been met in full within three months of its launch, thanks to its exceptional ... read more


TECH SPACE
Russia Plans to Launch Lunar Rovers to Moon after 2020

Russia to explore moon

Earth's Other Moons

Flying Formation - Around the Moon at 3,600 MPH

TECH SPACE
Mars Express - Pit chains on the Tharsis volcanic bulge

Post Solstice Rover Takes The Opportunity For A Wiggle

Russia and Europe give boost to Mars robotic mission

Mars missions race, India takes lead

TECH SPACE
Private Lunar mission and the future of space tourism

Inventors limber up for Geneva showcase

Open access to science research debated

Russia Plans First Tourist Spaceport

TECH SPACE
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

TECH SPACE
Busy first days for ATV Edoardo Amaldi

Space Savings for ISS Science Samples

Europe's ATV-3 Space Freighter Adjusts ISS Orbit

Aerojet Propulsion Helps Deliver Astronaut Care Packages

TECH SPACE
NASA Awards Launch Contract For Goes-R And Goes-S Missions

Spy satellite-carrying rocket blasts off

Orbital Receives Order for Minotaur I Space Launch Vehicle From USAF

Space Launch System Program Completes Step One of Combined Milestone Reviews

TECH SPACE
NASA Extends Kepler, Spitzer, Planck Missions

NASA's Kepler Mission Awarded Mission Extension

A planetary system from the early Universe

Discovery of an 'alien earth' imminent?

TECH SPACE
Price-fixing suit hits as eyes turn to e-books

NASA Selects Loral Platform to Help Enable Next Era of Space Communications

Space Debris Remediation - Who Are We Kidding?

US cracks down on smartphone theft




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement