. 24/7 Space News .
EXO WORLDS
NASA Poised to Topple a Planet-Finding Barrier
by Lori Keesey for GSFC News
Greenbelt MD (SPX) Jan 29, 2018


Goddard optics experts Babak Saif (left) and Lee Feinberg (right), with help from engineer Eli Griff-McMahon an employee of Genesis, have created an Ultra-Stable Thermal Vacuum system that they will use to make picometer-level measurements.

NASA optics experts are well on the way to toppling a barrier that has thwarted scientists from achieving a long-held ambition: building an ultra-stable telescope that locates and images dozens of Earth-like planets beyond the solar system and then scrutinizes their atmospheres for signs of life.

Babak Saif and Lee Feinberg at NASA's Goddard Space Flight Center in Greenbelt, Maryland, have shown for the first time that they can dynamically detect subatomic- or picometer-sized distortions - changes that are far smaller than an atom - across a five-foot segmented telescope mirror and its support structure. Collaborating with Perry Greenfield at the Space Telescope Science Institute in Baltimore, the team now plans to use a next-generation tool and thermal test chamber to further refine their measurements.

The measurement feat is good news to scientists studying future missions for finding and characterizing extrasolar Earth-like planets that potentially could support life.

To find life, these observatories would have to gather and focus enough light to distinguish the planet's light from that of its much brighter parent star and then be able to dissect that light to discern different atmospheric chemical signatures, such as oxygen and methane. This would require a super-stable observatory whose optical components move or distort no more than 12 picometers, a measurement that is about one-tenth the size of a hydrogen atom.

To date, NASA has not built an observatory with such demanding stability requirements.

How Displacements Occur
Displacements and movement occur when materials used to build telescopes shrink or expand due to wildly fluctuating temperatures, such as those experienced when traveling from Earth to the frigidity of space, or when exposed to fierce launch forces more than six-and-a-half times the force of gravity.

Scientists say that even nearly imperceptible, atomic-sized movements would affect a future observatory's ability to gather and focus enough light to image and analyze the planet's light. Consequently, mission planners must design telescopes to picometer accuracies and then test it at the same level across the entire structure, not just between the telescope's reflective mirrors. Movement occurring at any particular position might not accurately reflect what's actually happening in other locations.

"These future missions will require an incredibly stable observatory," said Azita Valinia, deputy Astrophysics Projects Division program manager. "This is one of the highest technology tall poles that future observatories of this caliber must overcome. The team's success has shown that we are steadily whittling away at that particular obstacle."

The Initial Test
To carry out the test, Saif and Feinberg used the High-Speed Interferometer, or HSI - an instrument that the Arizona-based 4D Technology developed to measure nanometer-sized dynamic changes in the James Webb Space Telescope's optical components - including its 18 mirror segments, mounts, and other supporting structures - during thermal, vibration and other types of environmental testing.

Like all interferometers, the instrument splits light and then recombines it to measure tiny changes, including motion. The HSI can quickly measure dynamic changes across the mirror and other structural components, giving scientists insights into what is happening all across the telescope, not just in one particular spot.

Even though the HSI was designed to measure nanometer or molecule-sized distortions - which was the design standard for Webb - the team wanted to see it could use the same instrument, coupled with specially developed algorithms, to detect even smaller changes over the surface of a spare five-foot Webb mirror segment and its support hardware.

The test proved it could, measuring dynamic movement as small as 25 picometers - about twice the desired target, Saif said.

Next Steps
However, Goddard and 4D Technology have designed a new high-speed instrument, called a speckle interferometer, that allows measurements of both reflective and diffuse surfaces at picometer accuracies. 4D Technology has built the instrument and the Goddard team has begun initial characterization of its performance in a new thermal-vacuum test chamber that controls internal temperatures to a frosty 1-millikelvin.

Saif and Feinberg plan to place test items inside the chamber to see if they can achieve the 12-picometer target accuracy.

"I think we've made a lot of progress. We're getting there," Saif said.

For more Goddard technology news, go here

EXO WORLDS
TRAPPIST-1 System Planets Potentially Habitable
Tucson AZ (SPX) Jan 24, 2018
wo exoplanets in the TRAPPIST-1 system have been identified as most likely to be habitable, a paper by PSI Senior Scientist Amy Barr says. The TRAPPIST-1 system has been of great interest to observers and planetary scientists because it seems to contain seven planets that are all roughly Earth-sized, Barr and co-authors Vera Dobos and Laszlo L. Kiss said in "Interior Structures and Tidal H ... read more

Related Links
Technology at NASA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Two US spacewalkers replace latching end of robotic arm

Space, the final frontier -- for nightclubs

Orion Spacecraft Recovery Rehearsal Underway

Italy's First Female Astronaut: 'No Room for Conflicts in Space'

EXO WORLDS
Texas firm completes "tie down test flight" of suborbital SARGE Rocket

Irish first as Elfordstown tracks and monitors Rocket Lab satellite deployment

Russia Working On Own, 100-Use, Environmentally Friendly Rocket

Ariane 5 satellites in orbit but not in right location yet

EXO WORLDS
European-Russian space mission steps up the search for life on Mars

Crater Neukum named after Mars Express founder

Mystery Solved for Mega-Avalanches in Tibet - and Perhaps on Mars

Opportunity gets dust cleaning and passes 45 kilometers of driving

EXO WORLDS
Space agency to pick those with the right stuff

China to select astronauts for its space station

No space for China's stay-at-home taikonauts

China Focus: The making of heroes - the women and men of China's space program

EXO WORLDS
Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

SES-15 Enters Commercial Service to Serve the Americas

EXO WORLDS
Applications now open for the Space Debris Training Course

Micius satellite enables intercontinental quantum communications

Kilopower: What's Next?

Scientists achieve high power with new smaller laser

EXO WORLDS
Johns Hopkins scientist proposes new limit on the definition of a planet

TRAPPIST-1 System Planets Potentially Habitable

Viruses are everywhere, maybe even in space

Rutgers scientists discover 'Legos of life'

EXO WORLDS
Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.