Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
NASA uses CubeSat bus to to test re-enter drag device
by Staff Writers
Moffett Field, CA (SPX) Mar 05, 2015


File image of a Cubesat in orbit.

NASA mission controllers confirmed that a small satellite launched from the International Space Station at 5:30 p.m. PST on Tuesday, March 3, has successfully entered its orbit, setting the stage to test technology that could enable rapid return of payloads from space. Over the next four weeks, the TechEdSat-4 satellite will deploy a second-generation exo-brake, an aerodynamic drag device, to perform a maneuver that will cause the satellite to de-orbit and re-enter Earth's atmosphere.

"The exo-brake is a self-stabilizing exospheric deorbiting mechanism that will allow us to return a payload to Earth fairly rapidly from an orbital platform, like the International Space Station," said Marcus Murbach, the TechEdSat-4 principal investigator at NASA's Ames Research Center in Moffett Field, California. "We were able to sendcommands and receive data to and from the satellite via the onboard modem using only a laptop and email account. This capability may greatlybenefit the entire nanosatellite community."

About 30 minutes after the Nanoracks CubeSat Deployer jettisoned it from the space station, the autonomous free-flying satellite powered on. At approximately 8 p.m., the spacecraft received a command via email and deployed its specially-designed parachute-like exo-brake, which operates as a passivedrag device at the extremely low pressures found at the top of the atmosphere. Engineers also confirmed the satellite has demonstrated new satellite-to-satellite communications technologies to provide precise information about the spacecraft's health and position. TechEdSat-4 arrived at the station aboard Orbital ATK's Cygnus spacecraft July 16, 2014.

TechEdSat-4 is equipped with a short-burst data satellite modem combined with a GPS receiver to perform communications functions, including providing data about the spacecraft's health, space environment and location. Together, these technologies replace ground stations used for tracking, rapid data retrieval and uplink capability, and permit satellite control via secure email.

The ability to accurately re-enter Earth's atmosphere will eventually enable the safe return of scientific samples and valuable cargo from orbital platforms at a lower cost than larger cargo and transfer vehicles. In addition, Murbach and his team intend for this technology to help enable future small or nanosatellite missions to the surface of Mars and other planetary bodies in the solar system.

"We've already developed a sample canister that during atmospheric re-entry could slip out the back of the satellite and safely be recovered on Earth," said Murbach. "This could also be adapted to future Mars satellites as a piggy-back or ride-along payload that could jettison independently and study the mid-latitude or other scientifically interesting regions of Mars. Currently, it is extremely challenging to access these sites."

TechEdSat-4 is the first NASA satellite to jettison from the Nanoracks CubeSat Deployer and the fourth satellite in the TechEdSat series to successfully achieve orbit. The TechEdSat series, a technology education collaboration with San Jose State University (SJSU) in California and the University of Idaho (UI) in Moscow, Idaho, uses the standard CubeSat structure, which measures one unit (1U) as approximately four inches cubed (10 centimeters cubed). TechEdSat-4 is a 3U satellite measuring approximately 12-by-four-by-four inches (10-by-10-by-30 centimeters) and weighing approximately five pounds.

Previously, TechEdSat-1, a 1U CubeSat released from the Japanese Small Satellite Orbital Deployer (JSSOD) aboard the station in 2012, successfully demonstrated use of the basic communications subsystem and radiation-tolerant controller.

It functioned in orbit for seven months until it re-entered Earth's atmosphere. It was followed by a successful satellite communication system flight test in April 2013 with TechEdSat-2, a 1U CubeSat. TechEdSat-3, a 3U CubeSat released from the JSSOD in 2013, was the first exo-brake to deploy and the first nanosatellite of its size to deploy from the station.

Ames currently is working on the next iteration in the series. The TechEdSat-5 satellite, scheduled for launch in 2015, will be very similar to the TechEdSat-4 design. It will introduce a modulating exo-brake capable of changing its surface area allowing the satellite to more precisely enter the atmosphere.

TechEdSat-4 was developed, integrated and tested at Ames by student interns with the support of co-investigators Periklis Papadopoulos, from SJSU, and DavidAtkinson, from UI. TechEdSat-4 is funded by Ames. The total cost of the satellite was less than $50,000 because the team primarily used commercial off-the-shelf hardware that was rigorously tested and simplified the design and mission objectives.

"One of the great things about this collaboration is the experience our university students and interns get at an early point in their careers," said Papadopoulos. "With this experience, many of our interns have started successful careers at NASA or in private industry - which is a great benefit that NASA uniquely provides."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Experiments at Ames
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
ADS delivers LISA Pathfinder propulsion and science modules for testing
Paris (SPX) Mar 02, 2015
LISA Pathfinder's propulsion and science modules are leaving the UK for the last time. Airbus Defence and Space will ship the two modules to IABG (Industrie Anlagen Betriebs Gesellschaft), near Munich in Germany, for final system level testing. The spacecraft is scheduled to be launched later this year by a European Vega rocket from Kourou, French Guiana. LISA Pathfinder is the first UK le ... read more


TECH SPACE
Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

TECH SPACE
Curiosity confirms methane in Mars' atmosphere

New Flight Software to Fix Memory Issues is Onboard Rover

NASA's Curiosity Mars Rover Drills at 'Telegraph Peak'

How Can We Protect Mars From Earth, While Searching For Life

TECH SPACE
Old-economy sectors are now tech, too: US study

Diamantino Sforza - Gentleman Farmer of Prince George's County

Water pools in US astronaut's helmet after spacewalk

Korean tech start-ups offer life beyond Samsung

TECH SPACE
China's moon rover Yutu functioning but stationary

Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

TECH SPACE
US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

NASA Hopes to Continue Cooperation on ISS Until 2024

Russia to use International Space Station till 2024

TECH SPACE
Arianespace certified to ISO 50001 at Guiana Space Center

SpaceX launches two communications satellites

Soyuz-2.1a Rocket Takes Military Satellite to Designated Orbit

Russia's Vostochny Cosmodrome Construction Reaches Home Stretch

TECH SPACE
Planets Can Alter Each Other's Climates over Eons

The mystery of cosmic oceans and dunes

Laser 'ruler' holds promise for hunting exoplanets

Scientists predict earth-like planets around most stars

TECH SPACE
US Military Satellite Explodes, Sending Chunks of Debris Into Orbit

UK Space Agency's second CubeSat mission is taking shape

Debris Fills Orbit as US Satellite Explodes

Smart crystallization




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.