. 24/7 Space News .
TIME AND SPACE
Much like white light, spacetime is also composed of a certain rainbow
by Staff Writers
Warsaw, Poland (SPX) Jan 18, 2016


Quantum particles of different energies sense different properties of spacetime. The effect is similar to the dispersion of light in prism: photons of different energies sense the same prism as having slightly different properties. Image courtesy FUW. For a larger version of this image please go here.

When white light is passed through a prism, the rainbow on the other side reveals a rich palette of colors. Theorists from the Faculty of Physics, University of Warsaw have shown that in models of the Universe using any of the quantum theories of gravity there must also be a 'rainbow' of sorts, composed of different versions of spacetime. The mechanism predicts that instead of a single, common spacetime, particles of different energies essentially sense slightly modified versions thereof.

We have probably all seen the experiment: when white light passes through a prism it splits to form a rainbow. This is because white light is in fact a mixture of photons of different energies, and the greater the energy of the photon, the more it is deflected by the prism.

Thus, we might say that the rainbow arises because photons of different energies sense the same prism as having slightly different properties. For years now it has been suspected that particles of different energies in quantum universe models essentially sense spacetimes with slightly different structures. Earlier hypotheses were not derived from quantum theory, however, but based on guesses. Currently, a group of physicists from the Faculty of Physics, University of Warsaw, led by Prof. Jerzy Lewandowski, has formulated a general mechanism responsible for the emergence of such a spacetime rainbow.

"Two years ago we reported that in our quantum cosmological models, different types of particles feel the existence of spacetimes with slightly different properties. Now it turns out that the situation is even more complicated. We have discovered a truly generic mechanism, whereby the fabric of spacetime felt by a given particle must vary depending not only on its type, but even on its energy," says Prof. Lewandowski.

In the current discussion the Warsaw physicists are using a cosmological model that contains just two components: gravity and one type of matter. Under the general theory of relativity, a gravitational field is described by deformations of spacetime, whereas matter is represented as a scalar field (the simplest type of field where every point in space is assigned only one value).

"Today there are many competing theories of quantum gravity. Therefore, we formulated our model in very general terms so that it can be applied to any of them. Someone might assume the kind of gravitational field - which in practice means spacetime - that is posited by one quantum theory, and someone else might assume another. Some mathematical operators in the model will then change, but this will not change the nature of the phenomena occurring in it," says PhD student Andrea Dapor (UW Physics).

The model so devised was then quantized - in other words continuous values, which may differ from one another in terms of any arbitrarily small amount, were converted to discrete values, which may only differ by specific intervals (quanta). Research on the dynamics of the quantized model revealed an amazing result: processes modeled using the quantum theory on quantum spacetime turned out to exhibit the same dynamics as when the quantum theory takes place in a classical continuous spacetime, i.e. the kind we know from everyday experience.

"This result is simply astonishing. We start with the fuzzy world of quantum geometry, where it is even difficult to say what is time and what is space, yet the phenomena occurring in our cosmological model still look as if everything was happening in ordinary spacetime!", says PhD student Mehdi Assanioussi (UW Physics).

Things took a more interesting turn when physicists looked at excitations in the scalar field, which are interpreted as particles. Calculations showed that in this model, particles that differ in terms of energy interact with quantum spacetime somewhat differently - much as photons of different energies interact with a prism somewhat differently. This result means that even the effective structure of classical spacetime sensed by individual particles must depend on their energy.

The occurrence of a normal rainbow can be described in terms of a refractive index, the value of which varies depending on the wavelength of light. In the case of the analogous spacetime rainbow, a similar relationship has also been proposed: the beta function, a measure of the extent to which the structure of classical spacetime differs as experienced by different particles.

This function reflects the degree of non-classicalness of quantum spacetime: in conditions similar to classical it is close to zero, whereas in truly quantum conditions its value is close to one. Today the Universe is in a classical-like state, so now the beta value should be near zero, and estimates performed by other groups of physicists indeed suggest that it does not exceed 0.01. This small value for the beta function means that currently the spacetime rainbow is very narrow and cannot be detected experimentally.

The study by the UW Physics theorists, funded by grants from Poland's National Science Centre, has yielded another interesting conclusion. The spacetime rainbow is a result of quantum gravity. Physicists generally share the view that effects of this type only become visible at gigantic energies near the Planck energy, millions of billions of times the energy of particles now being accelerated in the Large Hadron Collider (LHC).

However, the beta function value depends on time, and at moments close to the Big Bang it could have been much higher. When beta is close to one, the spacetime rainbow expands considerably. As a result, under such conditions the rainbow effect of quantum gravity could potentially be observed even at energies of particles hundreds of times smaller than the energy of protons in today's LHC.

"Rainbow metric from quantum gravity"; M. Assanioussi, A. Dapor, J. Lewandowski; Physics Letters B, vol. 751, 17 December 2015, pp 302-305; DOI: 10.1016/j.physletb.2015.10.043


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Faculty of Physics University of Warsaw
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Pinning down the ticking of the neural clock
Lisbon, Portugal (SPX) Jan 13, 2016
Our innate ability to track time is important for our everyday lives. We would not be able to speak, or even walk properly if we were not able to get the timing of each action just right. How are we able to track time? Are there a bunch of neural clocks ticking away somewhere deep inside our brain, cuing us on when to perform different actions? Recent results by neuroscientists at the Champalima ... read more


TIME AND SPACE
Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

South Korea to launch lunar exploration in 2016, land by 2020

TIME AND SPACE
A Starburst Spider On Mars

Opportunity Welcomes Winter Solstice

Rover Rounds Martian Dune to Get to the Other Side

Boulders on a Martian Landslide

TIME AND SPACE
SAIC Awarded $485 Million Enterprise Applications Service Technologies 2 Contract by NASA

NASA completes Orion parachute development tests

Strengthening Our Space Technology Future: Snapshots of Success

Six Orion Milestones to Track in 2016

TIME AND SPACE
Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

China plans 20 launches in 2016

China's Belt and Road Initiative catches world's imagination: Inmarsat CEO

TIME AND SPACE
Roscosmos prepares to launch first manned Soyuz MS

Long haul, night repairs for British, US spacewalkers

ISS Science Rockets Into 2016

British astronaut's first spacewalk set for Jan 15

TIME AND SPACE
Building a robust commercial market in low earth orbit

NASA awards ISS cargo transport contracts

SpaceX will attempt ocean landing of rocket Jan 17

Arianespace year-opening mission delivered to Final Assembly Building

TIME AND SPACE
Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

TIME AND SPACE
New twists in the diffraction of intense laser light

A new way to print 3-D metals and alloys

Space Protection - A Financial Primer

Russia Building a Powerful New Early Warning Radar Network









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.