. 24/7 Space News .
ICE WORLD
Most meltwater in Greenland fjords likely comes from icebergs, not glaciers
by Staff Writers
Washington DC (SPX) Nov 22, 2016


File image.

Icebergs contribute more meltwater to Greenland's fjords than previously thought, losing up to half of their volume as they move through the narrow inlets, according to new research.

Greenland, the world's largest island, is almost entirely covered by a permanent ice sheet that has been shrinking and melting as global warming increases temperatures. In fjords, narrow inlets where glaciers meet the sea, ice breaks off from glaciers to form dense packs of icebergs.

The new study finds 10 to 50 percent of iceberg melting happens in the fjords, not in the open ocean as assumed by previous research. As a result, more than half of all meltwater entering Greenland's glacial fjords can come from these dense packs of icebergs, outweighing the amount of freshwater coming from the island's glaciers, according to the new study.

"We should now be able to better measure the freshwater fluxes that are coming off of Greenland," said Ellyn Enderlin, a glaciologist at the University of Maine in Orono, and lead author of the new study published in Geophysical Research Letters, a journal of the American Geophysical Union. "That could be really important when we're thinking about how Greenland melts, how that influences ocean circulation and climate."

The new study could help scientists better understand what happens at the ice-ocean interface where glaciers meet the water, according to Jason Amundson, a geophysicist at the University of Alaska Southeast in Juneau, who was not involved in the new study.

"The reason that's interesting is that there's been quite a few studies in the past 20 years that have shown that the stability of ... glaciers depends on what happens at the ice-ocean interface," he said.

Melting point
The Greenland Ice Sheet releases more than 1,000 cubic kilometers (240 cubic miles) of meltwater per year, according to the authors. Previous research found half of this meltwater comes from icebergs and half comes from glaciers, but the amount icebergs melted in fjords before they reached the ocean remained a mystery.

In the new study, Enderlin and her colleagues used satellite images of two Greenland fjords to calculate the total volume of icebergs within them. Tracking the icebergs over the course of days, weeks and months allowed the researchers to calculate how much volume the icebergs lost through melting before they reached the ocean.

The researchers determined that from October to April, melting icebergs dominate the freshwater flux into the fjords losing up to half of their volume - glaciers barely melt during the cold winter months. At their peak, these dense packs of icebergs melted at a rate of around 1,000 cubic meters per second (260,000 gallons per second), the equivalent of filling an Olympic-sized swimming pool every two and a half seconds. Even during the warm summer months, underwater glacier melting only occurs at a maximum rate of 400 cubic meters per second (about 100,000 gallons per second).

Icebergs are tiny in size compared to glaciers, but they contribute such a large fraction of meltwater to fjords because their large surface area allows them to melt more quickly, according to Enderlin.

"If you took an ice cube and put it in your drink, one solid ice cube would melt pretty slowly, but if you took it out, hit it with a hammer and put it back in, it would melt a lot faster," she said.

Enderlin and her team also used satellite images to estimate the iceberg distribution in the two fjords, which they used to calculate the icebergs' total underwater surface area. Multiplying the melting rate by the total underwater surface area, Enderlin and her colleagues found more meltwater in the fjords was coming from icebergs than from glaciers throughout most of the year.

"What I see now is that iceberg melting is huge, and so if you don't take that into account you're going to come up with some crazy high estimates for glacier melting that might not be representative," Enderlin said.

Melting icebergs in the fjords create a layer of cold freshwater near glaciers. This freshwater can affect water circulation in the fjords, which can affect how glaciers melt and recede, Enderlin said.

Ocean circulation patterns could also be disrupted depending on where the icebergs melt and release their freshwater, according to Enderlin. Ocean circulation is a major driver of heat movement from the tropics to the poles, and disruptions to it could cause chaotic and unpredictable changes to weather and climate, she said.

Enderlin hopes to expand her studies on iceberg meltwater flux to other areas, like Antarctica. She said she will continue the work she started with Gordon Hamilton, who was a glaciologist at the University of Maine in Orono, and a co-author of new study. Hamilton died in October while doing research in Antarctica.

"I would say that really this was sort of our joint brainchild," Enderlin said. "I bounced lots of ideas off of him ... He was really instrumental to [the research] and it was sad that he couldn't see it come to be finally."

"Iceberg meltwater fluxes dominate the freshwater budget in Greenland's iceberg-congested glacial fjords"


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Maine
Beyond the Ice Age






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Enhanced nitrous oxide emissions found in Arctic
Joensuu, Finland (SPX) Nov 22, 2016
The Arctic is warming rapidly, with projected temperature increases larger than anywhere else in the world. The Arctic regions are particularly important with respect to climate change, as permafrost soils store huge amounts of the Earth's soil carbon (C) and nitrogen (N). Warming of arctic soils and thawing of permafrost thus can have substantial consequences for the global climate, as th ... read more


ICE WORLD
China sets patent filing record: UN

ESA astronaut Thomas Pesquet arrives at the International Space Station

Moscow to mull building Russian orbital station in Spring 2017

New crews announced for Space Station

ICE WORLD
Star One D1 arrives for heavy-lift Ariane 5 in Dec with 2 SSL-built satellites

SLS propulsion system goes into Marshall stand ahead of big test series

Predictive modeling for NASA's Entry, Descent, and Landing Missions

Arianespace doubles its Galileo delivery capacity with Ariane 5

ICE WORLD
ESA's new Mars orbiter prepares for first science

NASA field test focuses on science of lava terrains, like Early Mars

Can we grow potatoes on Mars

Dutch firm unveils concept space suit for Mars explorers

ICE WORLD
Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

ICE WORLD
Charyk helped chart the course of satellite communications

Intelsat and Intelsat General support hurricane Matthew recovery efforts

Boeing to consolidate defense and space sites

Can India beat China at its game with common satellite for South Asia

ICE WORLD
NASA microthrusters achieve success on ESA's LISA Pathfinder

Sweden orders new laser simulators from Saab

Calculations predict unexpected disorder in the surface of polar materials

New clues emerge in 30-year-old superconductor mystery

ICE WORLD
Scientists from the IAC discover a nearby 'superearth'

Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

ICE WORLD
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.